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ABSTRACT OF THE DISSERTATION

Performance Prediction and Scheduling for

Parallel Applications on Multi�User Clusters

by

Jennifer Melinda Schopf

Doctor of Philosophy in Computer Science

University of California� San Diego� ����

Professor Francine Berman� Chair

Current distributed parallel platforms can provide an e!cient set of resources on

which to execute many scienti	c applications� However� when these platforms are

shared by multiple users� the performance of an application may be impacted in

dynamic and unpredictable ways� In particular� it becomes challenging to achieve

good performance for any single application in the system�

To e!ciently use distributed parallel platforms� adaptive scheduling tech�

niques are needed to leverage the dynamic performance characteristics of shared

resources� A fundamental problem in developing adaptive schedulers is the inabil�

ity to accurately predict application execution performance�

One promising approach to modeling distributed parallel applications is

structural modeling� This approach decomposes application performance with

respect to its functional structure into a top�level model and interacting component

models� representing application tasks� Component models re�ect the dynamic�

time�dependent changes in e�ective capacities by allowing application or model

developers to choose their parameterizations�

Many conventional models are parameterized by single �point� values�

However� in shared environments� point values may provide an inaccurate repre�

sentation of application behavior� An alternative to using point values is the use
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of stochastic values� or distributions� Whereas a point value provides a single

value representation of a quantity� a stochastic value provides a set of possible

values weighted by probabilities to represent a range of likely behavior�

Parameters for structural models can be stochastic values in order to ac�

curately re�ect a range of observed behavior� and lend themselves to advanced

scheduling techniques� Performance models that cannot adapt to changing re�

source conditions are often insu!cient for the resource selection and scheduling

needs of production distributed parallel applications� We take advantage of of

stochastic information and develop a stochastic scheduler to maximize applica�

tion performance on shared clusters of workstations�

This thesis presents three main contributions� an approach to de	ne dis�

tributed parallel application performance models called structural modeling�

the ability to parameterize these models with stochastic values in order to meet

the prediction needs of multiple user clusters of workstations� and a stochas�

tic scheduling policy that can make use of the resulting stochastic prediction

to achieve more performance e!cient application execution times and more pre�

dictable application behavior�
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Chapter �

Introduction

Current distributed parallel platforms can provide the resources required

to execute a scienti	c application e!ciently� However� when these platforms are

shared by multiple users� the performance of the applications using the system may

be impacted in dynamic and often unpredictable ways� In particular� it becomes

challenging to achieve good performance for any single application using the shared

resources �SW��b� BCF���� GLFK��� Lue����

To use distributed parallel platforms e!ciently� adaptive scheduling tech�

niques can be developed to make use of the dynamic performance characteristics

of shared resources� A fundamental problem in developing adaptive schedulers is

the inability to accurately predict application execution performance�

Accurate performance predictions are necessary both to select a set of

target resources and to schedule the application and its data upon them� When

selecting resources� a prediction of application behavior may be used to evaluate�

and eventually rank� di�erent resource sets according to their likely performance�

Application scheduling uses predictions of application behavior to make decisions

regarding task and data mapping� as well as to estimate a program or task comple�

tion time� If any of these predictions are inaccurate� the resulting schedule may not

e!ciently use the resources� and application execution times may be unnecessarily

increased�

�





One promising approach to modeling distributed parallel applications is

structural modeling� which decomposes performance with respect to the func�

tional structure of the application into a top�level model and interacting compo�

nent models� Component models represent application tasks and application or

model developers can select the parameters of a component model �representing

both application and system characteristics� to re�ect the dynamic time�dependent

changes in e�ective capacities of the resources�

Performance models that do not re�ect changing resource conditions are

often insu!cient for the resource selection and scheduling needs of shared dis�

tributed parallel applications� Many conventional models are parameterized by

single �point� values� However� in shared environments� point values may provide

an inaccurate representation of application behavior due to variations in resource

performance� An alternative to using point values is the use of stochastic values�

or distributions� Whereas a point value provides a single value representation of a

quantity� a stochastic value provides a set of possible values weighted by probabil�

ities to represent a range of likely behavior�

Parameters for structural models can be stochastic values �or include

other additional information� in order to accurately re�ect a range of observed

behavior� These parameters� as well as stochastic performance predictions� can be

used by schedulers to adapt to the dynamic behavior of shared distributed par�

allel environments� We take advantage of stochastic information and develop a

stochastic scheduler to maximize the performance of shared clusters of work�

stations for parallel applications

This thesis presents three main contributions� an approach to de�ne dis

tributed parallel application performance models called structural modeling
 the

ability to parameterize these models with stochastic values in order to meet the

prediction needs of shared clusters of workstations
 and a stochastic scheduling

policy that can make use of stochastic predictions to achieve better application

execution times and more predictable application behavior�






This chapter brie�y de	nes key terms� motivates the need for this re�

search� and outlines the approaches for the following chapters�

��A High Performance Distributed Parallel

Computing

As high performance applications have grown in size and complexity� com�

putational resources have adapted to execute them e!ciently as well� One way this

has been achieved is through the parallelization of applications and the use of dis�

tributed resources� The area that we call distributed parallel computing is

also known as heterogeneous computing� metacomputing� or computing on a com�

putational grid� Basically� it involves the cooperative use of multiple distributed

resources connected by networks to solve a single� resource�intensive application�

Distributed parallel systems exist on a number of scales� from a group of

workstations in a lab to collections of high�performance computers and other re�

sources linked across the nation or the world� We include in this category clusters of

uniform workstations that may exhibit heterogeneous performance characteristics

when shared by multiple users� Distributed parallel systems are often character�

ized by resources with variable performance and slow or undependable networks�

Applications that execute on these networks may be resource�intensive� and have

often been adapted from parallel applications previously run on a single MPP�

In order to successfully use distributed platforms for parallel applications�

several basic issues must be addressed� First� hardware and software infrastructure

is required to provide dependable� consistent� and inexpensive access to compu�

tation sites� remote resources� and data archives� For the purposes of this thesis�

we assume that the underlying hardware is dependable� that is� we do not ex�

plicitly address the possibility of failure except as the perception of inadequate

performance of a resource by the application� We also assume that an underlying

communication substrate is available� For example� our experiments use either
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PVM or MPI as a communication substrate� and target applications running over

clusters of shared workstations� Secondly� monitoring tools are needed to observe

the use of the system� For example� we make extensive use of the Network Weather

Service �Wol��� Wol��� WSP���� a tool that can supply dynamic values for band�

width� available CPU� and memory on a given system� Thirdly� schedulers are

required to best use the available shared resources� That is the issue this thesis

addresses�

��B Performance Prediction Models

In order to build e!cient schedules� we must have accurate performance

prediction models for distributed parallel systems� that is� models that represent

the wall�clock execution time of an application or part of an application� Amodel

is a mathematical representation of a process� device or concept� Models are used

to represent a variety of entities throughout computer science"from architectures

to forecasts of resource usage to algorithm costs�

One way predictions and prediction models are used is as part of schedul�

ing to assign work to processors� To illustrate the need for accurate prediction

models� we present the following example� Consider a simple two�machine system�

consisting of machines A and B� executing an embarrassingly parallel application

with 
� units of identical work to be completed� In order to allocate work e!�

ciently� we need an accurate estimate of the execution time per unit of work for

each machine� This value is often the result of a prediction model�

If the estimate of time per unit of work for a machine is inaccurate� the

execution time of the application may be unnecessarily extended� If we assume

that the fastest execution time is achieved by having all the processors begin at the

same time and 	nish at approximately the same time� we can achieve an e!cient

schedule by balancing the number of units of work each processor is assigned

accordingly� A poor prediction model might report that Machine A will take �
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seconds and Machine B might take � seconds per unit of work� We would then

assign �� units to A and � units to B� for a predicted execution time of ���

seconds� as shown in Table ���� If Machine A had an actual execution time of ��

seconds per unit and Machine B took � seconds per unit� the execution time would

be ��� seconds� since the load during execution would be unbalanced� A better

data allocation� based on an accurate prediction of work� would be �� units for

Machine A and � units for Machine B�

Machine Machine Assign Assign Total Time Total Time
A B A B �Predicted� �Actual�

Inaccurate � sec � sec �� � ��� sec ��� sec
Prediction units units
Actual �� sec � sec �� � ��� sec ��� sec
Time units units

Table ���� Predicted and actual execution times for a unit of work in dedicated

mode on two machines�

em In Chapter 
� we explore structural modeling as an approach to

accurate performance modeling� Structural modeling uses the functional structure

of the application to de	ne a set of equations that re�ect the time�dependent�

dynamic mix of application tasks occurring during execution in a distributed par�

allel environment� We de	ne tasks to be atomic units of either communication or

computation�� since computation and communication comprise the major perfor�

mance activities associated with distributed parallel applications� In the case of

computation� we consider a task to be an atomic unit of computation to be exe�

cuted on a single machine� For communication� we consider a task to be an atomic

grouping of communication calls� typically over short time period� The functional

structure of an application can be thought of as a program dependence graph con�

sisting of nodes that are communication and computation tasks� and edges that

describe their relationship to one another� Also in Chapter 
� we present the steps

�Note that we generalize the conventional notion of �task� to include communication�
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involved in building a structural model for a given application� and discuss the

veri	cation and usage of structural models for generating performance predictions

for a variety of applications on three cluster platforms�

We do not model an application and a system as separate entities� Rather�

we examine implementations of an application for a particular resource environ�

ment� Parallel distributed applications are typically not developed for a generic

platform� they are tuned to the particular performance characteristics and archi�

tecture model of the resources available� For example� if an application includes

a rendering routine� there may be several choices of rendering implementations

available� each tuned in terms of the cache size� available math libraries� the pre�

cision needed for a given set of application data and�or the programming model

supported by the resource� The development of a speci	c implementation will de�

pend on characteristics of the application� its data� and the underlying platform�

Therefore a structural model should represent implementations of an application

with respect to particular platforms�

A good performance model� like a good scienti	c theory� is able to explain

available observations and predict future events� while abstracting away unimpor�

tant details �Fos���� Our models are represented by equations that are parame�

terized by both application and system characteristics� These equations allow us

to abstract away details into the top level models and the parameters� but still

accurately model the performance by showing the inter�relation of application and

system factors through the component models and their parameterizations� If

the predictions are for use in a timely manner " for example� as part of a runtime

scheduling approach " they must be able to be evaluated quickly and with minimal

computational overhead as well� a factor that we address throughout�



�

��C Point Values and Stochastic Values

Most performance prediction models use parameters to describe system

and application characteristics such as bandwidth� available CPU� message size�

operation counts� etc� Model parameters are generally represented as a single

likely value� which we refer to as a point value� For example� a point value for

bandwidth might be � Mbits�second�

In practice� point values are often a best guess� an estimate under ideal

circumstances� or a value that is accurate only for a given time�frame� In some

situations it may be more accurate to represent system and application charac�

teristics as a distribution of possible values over a range� for example� bandwidth

might be reported as a normal distribution having a mean of � Mbits�second with

a standard deviation of � Mbit�second� We refer to values represented as distri�

butions as stochastic values� Whereas a point value gives a single value for a

quantity� a stochastic value gives a set of possible values weighted by probabilities

to represent a range of likely behavior �TK�
��

The need for stochastic values in our example system can be seen when

comparing predictions in a dedicated �single�user� environment with predictions

in a multi�user �shared� environment� In a single�user environment� the time for

a machine to perform one unit of work can often be represented as a point value

since there is usually a negligible variance in resource availability and runtimes on

dedicated machines�� For example� to balance the execution times of the example

machines in a dedicated setting� where Machine A takes �� seconds to complete a

unit of work and Machine B takes � seconds �as shown in Table ���� Machine B

should receive twice as much work as Machine A�

In a multi�user distributed environment� contention for processors and

memories will cause the unit execution times to vary over time in a machine�

dependent fashion� hence� simply having a good point value prediction of execution

time may not be su!cient� If we determine unit execution time using a mean

�This may not be the case if an application is data dependent or non�deterministic�



�

Machine A Machine B Assign A Assign B

Single�user �� sec � sec �� units � units
Multi�user �point� � sec � sec �� units �� units

Multi�user � sec mean � sec mean
�stochastic� ��
 sec sd ��� sec sd # #

Table ��� Execution times for a unit of work in single�user and multi�user modes

on two machines� Multi�user stochastic reports a mean and standard deviation�

abbreviated sd�

capacity measure over a ��hour period for a 	xed amount of work� it is possible

that A and B will have the same unit execution time on average� say � seconds

per unit of work� In this case� it would make sense to equally balance the work

between the machines�

However� a mean value is only summary statistic for a range of actual

values� and may neglect critical information about the distribution of work over

time� A stochastic value includes information about the distribution of values

over the performance range� For example� it may be that because Machine B is

much faster than Machine A� it has more users and therefore a more dynamic

load� Because of this� at any given time the unit execution time for Machine B

might be a mean of � seconds per unit of work� with a standard deviation of ���

seconds� If we assume the distributions are normal� then two standard deviations

will cover approximately ��$ of the values� so the time to complete a unit of work

will usually vary over an interval from ��� seconds to ���� seconds� On the other

hand� since Machine A is a slower machine without as many users contending for

its resources� the actual unit execution time for this machine might be a mean of

� seconds per unit of work and a standard deviation of ��
 seconds �or ���� to

��� seconds per unit of work in most cases�� On average� both machines perform

the same� however at any given time their performance may di�er radically� The

amount of data to be assigned to each machine in this case is no longer a simple

decision� but will depend on the goals of the user or application developer and the
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optimization function of the scheduling policy�

Conventional performance prediction models typically cannot take advan�

tage of knowledge about the distribution of a model parameter value� In Chapter �


we de�ne an extension to structural modeling to allow for model parameters that

are stochastic values
 resulting in application performance predictions that are

stochastic predictions� We demonstrate that stochastic values can enhance the

information conveyed by a performance prediction� In order to make use of stochas�

tic values in prediction models� we need to know how the value can be represented

and how to combine the values arithmetically� We examine three representations

of distributional data� summarizing them as normal distributions� representing

them as a simple interval of values� and using histograms� Arithmetic formulas

for each representation are discussed� as well as the advantages and disadvantages

of each approach� Chapter � also gives an overview of related approaches and

additional research on the use of statistical approaches for pragmatic performance

predictions�

��D Stochastic Scheduling

With additional information provided by a stochastic prediction it is pos�

sible to develop more sophisticated application schedulers� As stated in �Ber����

an application scheduler may�

�� Select a set of resources on which to run the tasks of the application�

� Assign application task�s� to compute resources�


� Distribute data or co�locate data and computation�

�� Order tasks on a compute resource�

�� Order communication between tasks�
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In the literature� the 	rst two items are often referred to as mapping� the third

item is referred to as allocation� and items �� �� or ��� are referred to as schedul�

ing� Each of these actions uses some form of prediction�

When a scheduler makes use of stochastic information to determine a

schedule for the application� we refer to it as a stochastic scheduler� Just

as stochastic predictions predict a range of possible execution times� stochastic

schedulers must chose from a set of possible schedules� Therefore schedulers of this

nature will have the added actions of both de	ning the set of possible schedules

and deciding which schedule in that set is appropriate for a given application�

environment and user�

To illustrate using our example� if the application developer required the

application to 	nish by a given time� a scheduler may choose to conservatively

assign the data and assign more work to the smaller variance machine �Machine

A�� If the prediction supplied to the scheduler was a stochastic value represented

using a normal distribution� one way to do this might be to use a ��$ con	dence

interval� and assign the data using the mean plus two standard deviations as the

time per unit of work� This value is chosen for normal distributions since it equates

to approximately ��$ of the values in the predicted range� In the example setting�

we would assign �� units of work �rounded up from ������ for Machine A and �


units for Machine B� as shown in Table ��
� If the execution times do indeed fall

within the predicted interval �that is� machine A actually varied in performance

from ���� to ��� seconds per unit of work and machine B actually varied in

performance from from ��� seconds to ���� seconds�� this data assignment would

have a best case completion time of ����� but a worse case completion time of

only ���� based on the given range of possible performance� We call this a ���

conservative schedule since it corresponds to a ��$ probability that each of the

tasks will 	nish in the predicted range of time on their respective processors�

�A con�dence interval is an interval of plausible values for a characteristic constructed so that
the value of the characteristic will be captured inside the interval �DP�	a
�
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Assign A Assign B Best time Worst time

��$ Conservative Prediction �� units �
 units ���� sec ��� sec
��$ Optimistic Prediction �
 units �� units ���� sec ��� sec

Table ��
� Conservative and optimistic scheduling assignments�

If there was a small penalty for poor predictions� a scheduler might opti�

mistically assign a greater portion of the work to the machine with the maximum

potential performance� Machine B� Likewise� if the application developer had rea�

son to believe that the previous distribution of data was too conservative� he�she

might want to assign more units of work to Machine B� For example� the opposite

of a ��$ conservative schedule would be a ��� optimistic schedule� as shown

in line  of Table ��
� corresponding to a �$ conservative schedule� or a �$ con	�

dence interval that the task on a processor will complete in a given time� The ��$

optimistic schedule would have a best case completion time of ����� but a worse

case completion time of ��� in this setting�

As third option� we could consider allowing the percentage of conser�

vatism to vary for the two platforms� that is� instead of a ��$ optimistic or ��$

conservative schedule� we could vary these percentages along the entire spectrum�

Knowing the environment in order to determine the percentage of conservatism

needed is as important as having valid information when scheduling with stochas�

tic data� as the possible variations are extensive� A scheduling approach that can

make these decisions and provide good execution performance is the ultimate goal

of the work described in this thesis�

In Chapter �
 we present an approach to developing a stochastic sched�

uler� The stochastic scheduling policy we present is based on time balancing

and uses a system of bene	ts and penalties to de	ne the values to use in the set

of possible schedules� This approach is similar to the scheduling approach of Sih

and Lee �SL��b�� in which the amount of work is increased for a processor with

desirable characteristics �such as a light load� fast processor speed� etc��� called
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bene�ts� or decreased when a machine has undesirable properties �such as poor

network connectivity� small memory capacity� etc��� called penalties� The result�

ing schedules often achieve a faster application execution time than comparative

schedules built without the additional stochastic data� and frequently result in

more predictable application execution behavior for the experimental applications�

��E Summary

The three main research contributions presented in this thesis are� an

approach to performance modeling called structural modeling� the ability to pa�

rameterize these models using stochastic information� and a stochastic scheduling

policy that adapts to the performance characteristics available resources of shared

clusters of workstations� The goal of this dissertation is to present a technique for

modeling distributed parallel applications and a scheduling approach that can uti�

lize enhanced modeling information to determine performance�e!cient application

schedules�

��F Dissertation Outline

The thesis is organized as follows� Chapter  presents the experimental

environment used for the thesis� It details the platforms used� the workload charac�

terization� and the test suite of applications� Chapter 
 de	nes structural modeling�

Chapter � presents stochastic parameters and predictions� Chapter � describes the

use of the stochastic predictions in a stochastic scheduling policy based on bene	ts

and penalties� Chapter � presents conclusions and contributions� and discusses the

extensive possible future work�



Chapter �

Experimental Environment

In order to experimentally validate the claims in this thesis� we de	ne an

experimental space with a three axes� platform� workload and application� This

chapter de	nes these axes� and details the domain for each of them�

��A Experimental Platforms

We focus on environments where resources available to a user will have

variable� possibly unpredictable� performance due to the presence of other users on

the system� Although performance variation can occur on a single machine or on

a space�shared parallel platform �where sets of nodes are assigned to a single user

at a time�� we focus speci	cally on shared clusters of workstations� In particular�

our experiments were run on the following platforms�

UCSD Parallel Computation Lab �PCL� Cluster	 This cluster consists

of four Sparc workstations located in the UCSD Parallel Computation Lab�

The machines are connected with either �� Mbit �slow� or ��� Mbit �fast�

ethernet over an Intel switch� and all run Solaris� The machines in the PCL

cluster are�

Thing
� ��MHz Sun Ultra �� ��MBytes RAM� fast ethernet connection

�
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Thing�� ��MHz Sun Ultra �� ��MBytes RAM� fast ethernet connection

Picard� ��MHz Sparc ��� 
MBytes RAM� slow ethernet connection

Lorax� ��MHz Sparc �� 
MBytes RAM� slow ethernet connection

These machines are workstations on student�s desks� and are used for both

day�to�day activities like reading email� using Netscape� and running com�

pilers� as well as for more compute�intensive experimental work�

Application�Level Scheduling �AppLeS� Research Group Linux Cluster	

This cluster consists of four PC�s located in the Parallel Computation Lab�

They are connected using full�duplex� ��� megabit �fast� switched ethernet�

This cluster is made up of�

Soleil� ��� MHz Pentium II� Debian GNU�Linux� 
�� MBytes RAM

Saltimbanco� ��� MHz Pentium II� Debian GNU�Linux� �� MBytes RAM

Mystere� ��� MHz Pentium II� Debian GNU�Linux� 
�� MBytes RAM

Quidam� ��� MHz Pentium II� Debian GNU�Linux� �� MBytes RAM

The Linux Cluster is primarily used as a computation resource� and not used

on an individual basis� In addition� this is a lab�administered machine� so

extensive dedicated experiments were possible on this platform�

San Diego Supercomputer Center �SDSC� Alpha Farm	 This platform

consists of eight DEC Alpha 
������� workstations running OSF Unix lo�

cated at the San Diego Supercomputer Center� They each run at �

 MHz�

and have an �K primary cache and a ��K secondary cache� along with

��MBytes of RAM� They are connected via high�speed ethernet�

This shared platform has been used by various researchers in a compute�

intensive manner� usually as a system� but at times individually by machine�
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These three platforms span a wide range of cluster system characteristics�

In terms of performance� the Linux cluster machines were signi	cantly faster than

the PCL cluster machines� The PCL cluster machines were faster than the Alphas�

although there were twice as many machines in the Alpha Farm as the PCL clus�

ter� In terms of networking� both the Alpha Farm and the Linux Cluster used high

speed ethernet connections� but communication costs were typically much more

a factor in the performance on the Linux cluster due to it�s faster workstations�

In addition� while the Alpha Farm and Linux Cluster both have homogeneous

processors� allowing us to make some simplifying modeling assumptions� the PCL

platform had three types of machines and di�erent network connections as well�

Also� although the machines in the Alpha Farm and the Linux cluster were ho�

mogeneous� they were not used uniformly� as each had a single workstation used

more often than the others to connect to the system� Finally� these systems all

had di�erent operating systems� di�erent C and Fortran compilers� etc�

��B Workload Characterization

The second axis of our experimental space is workload� By workload we

mean the set of applications running on a given platform within a speci	c period�

Workload is typically measured in a performance model by the e�ect it has on

the platform resource capacities by such measures as bandwidth� available CPU�

latency� etc� One of the primary sources of performance variation on a production

platform is the �uctuation of available CPU and bandwidth at a given time� By

available CPU we mean the percentage of a machine available for use by a given

application� as used by Wolski �Wol���� These are also the parameters that are the

most di!cult to control in an environment where a user cannot limit the access of

other users to the machines or networks of interest� Note that a �typical� workload

can vary radically from one site to another� from one time interval to another� and

from one resource to another� so there is no universal typical workload�
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We addressed the lack of a typical workload in two ways� First� we ran

experiments on platforms where we could control the outside use of the resources

" unlike the average user " and could simulate additional workloads on them�

This helped in validating and verifying the performance prediction strategies and

models by providing repeatable results� Second� we ran experiments on production

platforms in competition with other users to validate and verify our predictive and

scheduling techniques in a realistic setting� Details on the workload simulations

and production workloads are discussed as part of the experimental results in

Chapters � and ��

��C Applications

The third axis of our experimental space is the application� Distributed

parallel applications have some similarity with both parallel and distributed ap�

plications� Two classes of distributed parallel applications� Master�Slave and

Regular SPMD� are detailed in the next two sections� along with the representa�

tive applications and implementations for each class that were used as a test suite

for this thesis�

Parallel applications targeted to distributed resources di�er from par�

allel applications targeted to MPPs in several ways� Characteristics of parallel

distributed applications include�

Coarse granularity	 In order to amortize the high communication costs of com�

mercial networks and o��the�shelf operating systems� distributed parallel ap�

plications are typically coarse�grained� Many MIMD or SPMD applications

that were originally developed for MPP�s port well to distributed parallel

platforms� but SIMD applications require synchronization that cannot be

performed e!ciently in this environment� Many vector codes have been re�

worked to suit networked resources� but this can be a di!cult task�

Small number of tasks	 Distributed parallel applications generally consist of a
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small number of tasks �CS��� DS��� DTMH��� PRW��� MMFM�
� WK�
�

YB���� The size of individual tasks vary from application to application�

Modular Implementation	 Many distributed parallel applications are actually

several parallel applications joined together to solve a larger problem� For

example� the Global Climate Modeling group at UCLA combined an ocean

physics code �Cox���� an atmospheric physics code �AL��� MMFM�
� and

an atmospheric chemistry code �DS��� to more accurately investigate global

weather patterns� Each of these codes were developed for separate plat�

forms and but are executed in tandem over a wide�area high�performance

distributed parallel platform to solve a larger problem �MFS����� Distributed

parallel applications such as this may also use a mixture of languages and

computational paradigms �data parallel� sequential� vector�� and may even

use di�erent underlying communication substrates �PVM� MPI� NEXUS�

etc���

Tasks may have multiple implementations	 A task in a parallel distributed

application may have multiple implementations� each perhaps tuned to a dif�

ferent platform or performance characteristic� For example� if an application

uses a rendering routine� there may be several choices of rendering routines

targeted to di�erent possible platforms� each di�ering in performance capa�

bility and algorithmic approach�

Many parallel distributed applications fall within the classes of Master�

Slave and Regular SPMD applications� described in the following sections� Within

these classes� we attempted to vary other characteristics as well� The applications

in our test suite are written in C� Fortran� or a mix of both� Some run over PVM�

some use MPI� Some were developed by students� some are kernels of scienti	c

codes� and others are part of scienti	c benchmarking suites� The communica�

tion and computation ratios vary from computation�intensive to communication�

intensive� although most are coarse�grained� with a high computation to commu�
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nication ratio as seen in most practical codes for distributed platforms� The codes

we are using have di�erent synchronization styles� and address data and work dis�

tribution issues di�erently� Future work includes extending the techniques in this

thesis for other application classes� such as pipelined and multi�level codes�

��D Master�Slave Applications

One class of application that achieves good performance on clusters of

workstations is the Master�Slave class of applications� These applications are

structured so that a Master process controls the data for multiple Slave processes�

with all the Slaves running the same code� The Master�Slave paradigm is widely

used in the cluster computing setting because it is easy for the Master to dynami�

cally adjust the data decomposition across the Slave computations� and to achieve

good performance on systems with changing characteristics� This is especially

important for multi�user clusters of heterogeneous workstations� Programming

approaches vary for Master�Slave computations� We denote the two most common

Master�Slave paradigms as Assign and Request� and characterize their program�

ming approaches below�

Assign	 In an Assign�style Master�Slave application� the Master process assigns

all of the data to the Slave processes before they begin to execute� The

Slaves run in parallel� and send their results back to the Master process�

This usually repeats for some number of iterations�

An example of an Assign Master�Slave application is shown in Figure �� and

the pseudocode is given in Figure �� This type of application consists of a

Master task that determines how much work each of P Slave tasks performs�

The Master communicates to the Slaves generally using a Scatter routine�

perhaps a multicast� and receives information back from the Slaves with a

Gather routine� perhaps a series of receives� Synchronization occurs every
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iteration at the Master task� but may also occur for each communication or

computation task depending on the implementation�

Slave1 Slave2 SlaveP

Master

Master

Figure ��� Graph of one iteration of an Assign Master�Slave application�

End of iteration computation

Broadcast Data to Slaves
For i = 1 to MaxIterations

Master Computation:

Slave Computation:
While (True)

Receive Data

Send Data to Master
Compute Slave Work

Start Slaves

Receive Data from all Slaves

Kill Slaves

Figure �� Pseudocode for an Assign Master�Slave application�

Request	 In a Request�style Master�Slave application� the Master task holds the

data and Slave tasks request portions of it� Each piece of work can be thought

of as a job� Output from the job can either be returned a piece at a time

when the Slave requests another job� or all at once when the pool of jobs is



�

empty� There is no synchronization between the Slaves� but there may be

a synchronization between iterations as the Master determines a new set of

jobs to be handed out� This style of Master�Slave application is also called

work queue� task farming� or selfscheduling �Wil���� This is characterized by

the graph in Figure �
 and the pseudocode in Figure ���

Slave1 Slave2 SlaveP

Master

Figure �
� Graph of one iteration of a Request Master�Slave application�

For i = 1 to MaxIterations

Master Computation:
Start Slaves

Send initial Data to each Slave

Slave Computation:
While (True)

Receive Data

Send Data to Master
Compute Slave Work

Ask Master for more Data

Receive Data from all Slaves
While there is Data uncomputed

Send Data set to Slave

Receive Data from all Slaves

End of iteration computation
Kill Slaves

Figure ��� Pseudocode for a Request Master�Slave application�

In the following subsections we present the Master�Slave distributed ap�

plications that are used as the test suite codes for this thesis�
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��D�� Genetic Algorithm Application

Genetic algorithms are search algorithms that model survival over gen�

erations of populations� In a typical genetic algorithm� there is a �population�

of possible solutions that are �bred� with one another to create �child� solutions�

The child solutions are evaluated� and the �	ttest� �best� of the new �generation�

of solutions are used as �parents� for the next generation� Genetic algorithms

have been used extensively by the arti	cial intelligence community as an optimiza�

tion technique for NP�complete and NP�hard problems� They are now being used

by several groups of computational scientists �DTMH��� SK��� PM��� to address

problems such as protein folding�

We implemented a genetic algorithm �GA� heuristic for the Traveling

Salesman Problem �TSP� �LLKS��� WSF���� Our distributed implementation of

this genetic algorithm uses a global population and synchronizes between gener�

ations �Bha���� It was written in C using PVM� This application has a typical

Assign Master�Slave structure� All of the Slaves operate on a global population

�each member of the population is a solution to the TSP for a given set of cities�

that is broadcast to them by the Master using a PVM multicast routine� Each

Slave works in isolation to create a speci	ed number of children �representing new

tours�� and to evaluate them� This data is sent back to the Master� Once all the

sets of children are received by the Master� they are sorted �by e!ciency of the

tour�� some percentage are chosen to be the next generation� and the cycle begins

again� Figure �� shows the pseudocode for this application� In our implemen�

tation� a Slave process runs on the Master processor� Data assignment is done

statically at runtime�

��D�� High Temperature Superconductor Kernel

The High Temperature Superconductor Kernel �HiTemp� is used as part

of the suite of applications used to test new versions of PVM� and is a simpli	ed





Slave Computation:
While (True)

Receive population from Master
For j = 1 to NumberofChildren

Randomly pick two parents

Send all children to Master

Cross parents to create child
Evaluate child

For i = 1 to MaxIterations

Master Computation:
Start Slaves

Receive Data from all Slaves

Broadcast entire population to Slave

Sort children
Select next generation

Kill Slaves
Return best child

Figure ��� Pseudocode for GA Application

kernel of a larger superconductor code �Koh���� The Master in this application

spawns Slaves that do matrix inverses of various sizes using specially�tuned BLAS

routines�

HiTemp uses a �pool of jobs� approach� typical of the Request�style

Master�Slave applications� The Master is started� and it spawns a Slave task

on each available host� Each Slave then requests individual jobs from the avail�

able work pool held by the Master� in this case the matrix information� until the

pool of jobs is empty� In this application� the actual jobs vary in size nondeter�

ministically to simulate superconductor environmental data� This code is used as

a test code for PVM� and is written in C and Fortran using PVM library calls�

Data decomposition is done dynamically at runtime by the Slaves� and the only

synchronization is between iterations� A Slave process runs on the Master process�

but this interferes at most minimally with the Slave execution� Pseudocode for

this application is given in Figure ���






Slave Computation:
While (True)

Receive job
Compute matrix inverse
Send job result to Master

For i = 1 to MaxIterations

Master Computation:
Start Slaves

Send one job to each Slave

While there are jobs in work pool

Receive result of job from Slave

Send job to Slave

Receive result of last job from each Slave

Kill Slaves

Figure ��� Pseudocode for HiTemp kernel

��D�� N�body Code

N�body simulations� also known as particle simulations� arise in astro�

physics and celestial mechanics �gravity is the force�� plasma simulation and molec�

ular dynamics �electrostatic attraction or repulsion is the force�� and computa�

tional �uid dynamics �using the vortex method�� These problems were some of

the 	rst problems addressed in parallel computation and continue to be studied

in distributed parallel environments� The papers collected in the SIAM mini�

symposium �HT��� and its predecessor �Bai��� o�er ample evidence of the breadth

and importance of N�body methods�

The problem our N�body implementation addresses is the tracking of the

motion of planetary bodies� We scale the number of bodies involved� using a two�

dimensional space with boundaries� Our implementation is an exact N� version

that calculates the force of each planet on every other� and then updates their

velocities and locations accordingly for each time step� It is based on an Assign�

style Master�Slave approach �CI��� and written in C using PVM� For each iteration�

the Master sends the entire set of bodies to each Slave� and also assigns a portion



�

of the bodies to each processor to calculate the next iteration of values� The Slaves

calculate the new positions and velocities for their assigned bodies� and then send

this data back to the Master process� Data decomposition is done statically at

runtime by the Master� which also reads in an initial data 	le� Figure �� shows

pseudocode for this application�

For i = 1 to MaxIterations

Master Computation:

Slave Computation:
While (True)

Start Slaves

Broadcast all body data to Slaves

Receive velocity, force, position data
Compute new data for bodies in sector
Send sector data to Master

Kill Slaves

Sort bodies according to new positions
Receive data for each sector from Slaves
Send each slave sector information

Figure ��� Pseudocode for the N� N�body Code�

��E Regular SPMD Applications

In conjunction with the class of Master�Slave applications� we also fo�

cused on the class of Regular SPMD applications� Regular SPMD applications

are comprised of multiple identical tasks �with no �lead� task� working on di�erent

data sets� We focus on applications that have regular� well�structured communi�

cation patterns� Such codes are widely used in the scienti	c community� A few

examples include� NASA�s High Speed Civil Transport design code �GW�� an ap�

plication to model the San Diego Bay �HT�� as well as matrix codes and other

mathematical functions at the heart of many scienti	c codes� including successive

over�relaxation codes� multigrid codes and Fourier transforms �BHS�����
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We implemented a test suite of Regular SPMD applications as exam�

ples of this class� In the following subsections� we address the methods of data

distribution� the communication patterns� and synchronization issues for each�

��E�� Successive Over�Relaxation Code

Successive Over�Relaxation �SOR� is a Regular SPMD code that solves

Laplace�s equation� Our implementation uses a red�black stencil approach where

the calculation of each point in a grid at time t is dependent on the values in a

stencil around it at time t��� as depicted in Figure ��� The application is divided
into �red� and �black� phases� with communication and computation alternating

for each� In our implementation� these two phases repeat for a prede	ned number

of iterations� Pseudocode for the SOR is given in Figure ���

P1 P2 P3

Figure ��� Strip decomposition for Red�Black SOR

We used a strip decomposition to partition the code onto the workstation

clusters� In this implementation� all the processors are equal peers� as opposed to

the Master and Slave set�up� and each is responsible for an individual data set�

Communication is done twice an iteration� and there is only loose synchronization

between neighboring processors�

��E�� NPB LU Benchmark

We implemented distributed forms of several of the NAS Parallel Bench�

marks �NPB� �BHS����� These benchmarks were developed to embody key compu�
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Setup, including decomposition

For i = 1 to MaxIterations

Receive right and left data

For k = FirstCol to LastCol

For j = FirstRow to LastRow

Compute red values

RED PHASE

BLACK PHASE

Receive right and left data

Share right column with right neighbor

Share left column with left neighbor

For k = FirstCol to LastCol

For j = FirstRow to LastRow

Compute black values

Share left column with left neighbor

Share right column with right neighbor

Figure ��� Pseudocode for the SOR benchmark�

tational and data�movement characteristics of typical processing in computational

�uid dynamics �CFD� calculations� and have gained wide acceptance as a standard

indicator of supercomputer and parallel distributed platform performance� They

are carefully coded to use modern algorithms� avoid unnecessary computation� and

generally represent real�world codes� They perform reasonably well across many

platforms�

The LU benchmark is a simulated CFD application that solves a block�

lower�triangular�block�upper�triangular system of equations� This system of equa�

tions is the result of an unfactored implicit 	nite�di�erence discretization of the

Navier�Stokes equations in three dimensions� The LU benchmark 	nds lower trian�

gular and upper triangular matrixes such that L �U � A for an original matrix A�

The NPB version of the LU benchmark is based on the NX reference implementa�

tion from ���� �BBB����� It consists of a startup phase� a lower�upper triangular�

solving function that is iterated� and then a veri	cation phase� The lower�upper

triangular solving function is an iterative implicit method that partitions the left�

hand side matrix into a lower triangular matrix and an upper triangular matrix�
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A �D partitioning of the grid onto processors occurs by halving the grid

repeatedly in the 	rst two dimensions� alternately x and then y� until all power�of�

two processors are assigned� resulting in vertical columns of data assigned to the

individual processors� The computation then proceeds to compute from one corner

of a given z plane� on diagonals� to the opposite corner of the same z plane� and

then proceeds to the next z plane� Communication of boundary data occurs after

completion of the computation on all diagonals that contact an adjacent partition�

This constitutes a diagonal pipelining method and is called a �wavefront� method

by its authors �BFVW�
�� This is depicted for one Z plane in Figure ���� It

results in a relatively large number of small communications of � words each�

6 7

2

3

3

4

4

5

5

6

2

3

4 5

1

4

Figure ���� Wavefront execution of the LU benchmark� shown for a single z plane�

labeled with order of execution possible�

Although this algorithm is not an optimal solution for the problem� it

is used as a NPB benchmark because it is very sensitive to the small�message

communication performance of an MPI implementation� It is the only benchmark

in the NPB �� suite that sends large numbers of very small ��� byte� messages�

For this reason we included it in our Regular SPMD test suite�

��E�� SP Benchmark

The SP Benchmark� part of the NPB suite �BHS����� is a simulated

CFD application that solves systems of equations resulting from an approximately
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factored implicit 	nite�di�erence discretization of the Navier�Stokes equations� The

SP code solves scalar penta�diagonal systems resulting from full diagonalization of

the approximately factored scheme� It solves three sets of un�coupled systems of

equations� 	rst in the x� then in the y� then in the z direction� It uses a multi�

partition algorithm �BC��� in which each processor is responsible for several disjoint

sub�blocks of points ��cells�� of the grid� The cells are arranged such that for each

direction of the �line solve phase�� the cells belonging to a certain processor will

be evenly distributed along the direction of solution� This allows each processor

to perform useful work throughout a line solve� instead of being forced to wait

for the partial solution to a line from another processor before beginning work�

Additionally� the information from a cell is not sent to the next processor until all

sections of linear equation systems handled in this cell have been solved� Therefore

the granularity of communications is kept large and fewer messages are sent�

Structurally� this code has a small initialization phase� followed by a

broadcast of the data to all the processors� Then the bulk of the work is done

in a phase that repeats for ten iterations and consists of copying faces �overlap�

ping data� between each processor� solving in the x direction� the y direction� and

the z direction� and an update task� There is loose synchronization between nodes

for each iteration�

��E�� EP Kernel

We include the NPB Embarrassingly Parallel �EP� Kernel �BHS���� as

an example of a Regular SPMD application with no synchronization and minimal

communication�

The NPB EP benchmark generates n pairs of random numbers� and tests

them to see whether Gaussian random deviates can be constructed form them� The

pseudo�random number generator used in this is of the linear congruential recursion

type� This problem is typical of many Monte Carlo simulation applications� The

only requirement for communication is a small gathering of information at the end�
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There is no synchronization� The data decomposition� in this case the assignment

of a number of pairs to generate� is done statically at compile time�
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Chapter �

Structural Modeling

In this chapter we present a performance modeling technique called

structural modeling that provides a prediction of an application�s execution

time on a set of distributed resources� A structural model abstracts application

performance as a set of component models� one for each task� and an over�reaching

top�level model that describes their relations� Each component model can be se�

lected independently� providing the �exibility to substitute distinct models for

each computation and communication task as required� Structural modeling was

developed for distributed parallel applications� especially those targeted to pro�

duction clusters of workstations� but this approach is fully applicable to a wider

environment�

This chapter is organized as follows� Section 
�A de	nes the terms used

throughout and addresses several practical issues for using structural models in

current distributed parallel environments� We fully derive structural models for

two representative applications� the Genetic Algorithm Master�Slave code in Sec�

tion 
�B and the Regular SPMD Successive Over�Relaxation benchmark in 
�C�

Modeling results for additional applications in each class are summarized in Sec�

tion 
�D to demonstrate the accuracy and �exibility of this approach� Related

work is presented in Section 
�E� and Section 
�F gives a summary of the approach

and results presented in this chapter�
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��A De�nitions

One promising approach to modeling distributed parallel applications is

structural modeling� This approach decomposes application performance with

respect to it�s functional structure into a top�level model and interacting compo�

nent models representing application tasks� Unlike many other performance model�

ing approaches �TB��� Moh��� KME��� ML��� YZS��� SW��a� SW��b� DDH����

Adv�
� CQ�
�� structural models do not represent an application and a system as

separate entities� In structural modeling� implementations of an application are

represented for a particular resource environment� This is important because in

distributed parallel environments the platform and the application are not inde�

pendent and cannot be altered in an independent manner in the model�

A structural model consists of a top�level model� component models�

and possibly input parameters� The inputs to a structural model are input pa�

rameters that represent relevant system and application characteristics� Input

parameters can be benchmarks� constants� dynamic system measurements or appli�

cation attributes� such as problem size or the number of iterations to be executed�

The output of a structural model is a predicted execution time� Structural

models can also be developed for alternative performance metrics� such as speedup

or response time� The inputs and outputs of a structural model may be single� nu�

merical point values or may be stochastic values� as described in the next chapter�

The goal of a structural model is to provide an estimate of execution time for a

distributed parallel application�

A top�level model is de	ned to be a performance equation consisting of

component models and composition operators� Each component model is also

de	ned to be a performance equation� parameterized by platform and application

characteristics� We de	ne composition operators as functions that compose

component models� as described below� Top�level models represent the dynamic

mix of application tasks� based on the functional structure of the application� All







interactions between modeled components �including overlap� are re�ected in the

top�level model�

Every task in a top�level model is represented as a component model�

Component models are de	ned as performance equations representing the per�

formance of individual tasks of the application implementation� They are com�

prised of input parameters �benchmarks� constants� etc�� and�or other component

models� We de	ne a task to be an atomic unit of communication or computation�

The exact de	nition of task varies between applications in the same way the notion

of �basic operation� varies between algorithms� For some applications� a task is

a function �CS��� or an inner loop where most of the work is done �DS���� For

other applications� a task may be another entire application that can stand on it�s

own �MMFM�
��

In this thesis� we use the term computation task to denote an atomic

unit of computation that is not functionally split between two machines� For ex�

ample� a data�parallel slave task in a Master�Slave application can be performed

on multiple machines simultaneously� but will not be split into two or more con�

stituent sub�tasks� each running on a di�erent machine� We denote a communi�

cation task to be a logically related set of communication activities� An example

of this would be a communication task that enforces the sharing of data between

computation phases�

Component models and input parameters are combined using composition

operations� We de	ne composition operators to be functions that compose the

results of component models and input parameters� They represent all interactions

between component models� For example� the operator � is used as a combine

operation� Compositional operators must be de	ned for whatever domain the input

values of the component models represent� This is discussed in detail when the

domain of input parameters are extended to allow for stochastic valued parameters

in Chapter ��

Structural models provide a compromise between a general �one size 	ts
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all� approach and a completely speci	c �tailor made� approach to developing per�

formance models� �One size 	ts all� performance models are general� and can be

used for a large set of applications� but such models may not be especially accurate

for any single application� Alternatively� a �tailor made� model is likely to have a

high degree of accuracy for the application it is targeted to� but will be di!cult to

adapt to 	t multiple implementations� The structural modeling approach is meant

to provide the �exibility of a general solution through the top�level model� but the

accuracy of a speci	ed model via the instantiation of the component models�

��A�� Accuracy

The issue of accuracy is fundamental to any modeling approach� Follow�

ing the literature� we de	ne the error of a predictive model to be the absolute

di�erence between the prediction and an actual execution time �wall�clock time��

Other possible error metrics to determine accuracy include mean square error or

mean percentage error� A model is accurate when the error is �small�� where

small is a subjective term based on the goals of the user� and generally de	ned by

a threshold value�

The accuracy required from a predictive model varies depending on the

use of the resulting prediction� We characterize predictions as accurate in a �rel�

ative� sense or an �absolute� sense� A relatively accurate set of predic�

tions is a set of predictions that may have a large error associated with them�

but that have a valid ranking between them� That is� for a set implementations

fA�� A�� � � �Ang� predictions Pred�A��� Pred�A��� � � �� Pred�An�� and actual execu�

tion times Act�A��� Act�A��� � � �� Act�An�� the predictions are relatively accurate

if Pred�A�� � Pred�A�� � � � � � Pred�An� implies Act�A�� � Act�A�� � � � � �

Act�An�� An absolutely accurate prediction gives a result within a small error

threshold and may or may not result in an accurate ranking� In this case� we have

Pred�Ai� � Threshold � Act�Ai��

Di�erent degrees of accuracy are appropriate in di�erent instances� For
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example� when models are used to generate predictions to select or compare re�

sources� it is enough for them to give a valid relative ranking of resource sets�

Using a relative metric has also been e�ective when comparing di�erent parallel

machines for a given application in �WH��� and in 	nding bottlenecks �MR����

However� for most scheduling needs� an absolute prediction is a requirement�

In our setting� the accuracy of a prediction can only be determined post�

mortem� Without signi	cant additional information� it is di!cult to predict the

accuracy of the prediction itself� If we know the error contributed by each model

component� it may be possible to calculate the overall expected error for the ap�

plication� however this is not always the case�

��A�� Application Pro�le

For many applications� execution time is concentrated in a subset of the

tasks� We use an application pro	le to prioritize the signi	cance of each task to the

overall application execution time� Given an application

APP � fTASKigni��� we de	ne an application pro�le to be a set of tuples of

the form� f� TASKi� Pi �g� where TASKi is one task in the set de	ned in the top�
level model� and Pi is the percentage of execution time spent executing in that

task� with
P
Pi � ���$� This value is less than ���$ when some part of the

execution time is spent executing part of the application not abstracted as a task�

and should be negligible�

The application pro	le is used to prioritize the tasks according to a user

de	ned metric of �importance�� In many cases� as discussed in the next sections�

there is a fairly clear�cut dividing line between tasks that contribute signi	cantly

to the application performance and those that do not� according to the application

pro	le� We consider the determination of which tasks are �important� to be a user

de	ned decision�
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��A�� Building Structural Models

Informally� there are 	ve steps to building structural prediction models�

Examples of this method are given in Sections 
�B and 
�C for the GA and SOR

codes� respectively�

�� The structure of the application is examined and a top�level model is

constructed to represent this structure�

� Component models for the set of tasks distinguished in the top�level model

are de	ned�


� An application pro�le is used to determine which components must be

modeled to achieve the required accuracy�

�� Component models are selected using available data sources� meta�data and

error threshold as guides�

�� The accuracy of the model is analyzed and if the model is determined to

be inaccurate for its use� a course of action is determined�

��A�� Practical Issues

Several issues must be addressed to make it feasible to use structural

modeling in a practical setting�


	 How are top�level models de�ned

We use an application developer�s description of an implementation to

construct the top�level model� Often in describing an application� a developer will

use a graphical representation such as a program dependency graph �FOW���� a

more detailed representation such as Zoom �ASWB���� or even a visual program�

ming language representation such as HeNCE �BDGM�
�� CODE �� �NB��� En�

terprise �SSLP�
� or VPE �DN���� From these graphical representations� de	ning
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a structural model is straightforward� Even when a graphical representation is not

available� it is often straightforward to determine the structure of an application

at its most coarse�grained level�

�	 Where do input parameters come from

Input parameters are values for application and system characteristics

used in the calculation of a component or top�level model� Examples of input

parameters are benchmarks or operation counts� an iteration count� a dynamic

measurement for bandwidth� or a value for the size of a message� Input parame�

ters for models� both application and system characteristics� can be supplied from

several sources� In the MARS system �GR��� this data is obtained by instrument�

ing the code and using an application monitor to record the application�s behavior�

System�speci	c data� such as bandwidth values� CPU capacity� memory sizes� etc��

can be supplied by system databases available in most resource management sys�

tems �such as the Meta�Computing Information Service �MCIS� for the Globus

project �FK��� or the Host Object Database for Legion �Kar��� GWtLt���� or by

on�line tools such as the Network Weather Service �Wol��� Wol��� WSP��� that

can supply dynamic values for bandwidth� CPU usage� and memory on a given sys�

tem� One goal of the structural modeling approach is to use realistically available

information when de	ning the models�

�	 What information is generally available for the parameters

In general� we assume that basic information regarding the bandwidth�

latency or startup� and arithmetic operations are available for each system� For

each application� we assume that information regarding the structure� task opera�

tions and messages is available� Basic system information can be generated using

simple benchmarks� For example� on the PCL cluster we generated bandwidth

values using a simple PVM benchmark that sent ��� messages from processor x to

processor y of a given size� then a � byte acknowledgment was sent from processor
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y to x� A similar benchmark was constructed to estimate latency and message

packing costs on the systems� These benchmarks are given in Table 
�� and 
��

for the PCL cluster� Alternatively� an on�line monitoring tool like the Network

Weather Service can supply bandwidth values� as was done for the Linux Cluster

�see Section 
�B����

Similarly� we assume that basic arithmetic operation benchmarks are

available� We calculated these using a benchmark that took the average over �

runs of ��� operations of each type of interest� for example� as given in Table 
��

Both these benchmarks take a minimal e�ort to run� but provide necessary basic

information for modeling�

In addition to the system information� information about the application

and its implementation is needed� For the communication portions of the code� we

assume that the number and size of the messages is well known� This can often be

achieved through static code analysis or dynamic code instrumentation� Likewise�

for computation elements� we assume that either there is a basic benchmark for

the application on the machines of interest� or an operation count is available� Op�

eration counts of the sort we need can be found using a disassembler like dis �mp��

or by using compiler options on some platforms�

If memory usage or disk usage were modeled as well� we would again

require some basic information about these properties� One goal of structural

modeling was to use easily available information� but without any information we

cannot hope to achieve accurate predictions�

�	 How do you benchmark a code

The accuracy of a component model will depend on the accuracy of its

input parameters� In general� to benchmark the computation portion of an appli�

cation in a dedicated environment� we use a single processor version of the code

running on a problem size equal to medial problem size
number of slaves

� averaged over � runs� The

set of problem sizes is determined by the user� We use a benchmark on this prob�
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lem size to emulate the conditions an application is likely to experience over the

problem size range of interest� Likewise� we take the mean over � runs to assure

a high degree of accuracy for the input parameter used� Additional benchmarking

approaches are presented in Section 
�D�
�

It is possible that adding timing statements to a code in order to bench�

mark sections of it may perturb the code �MRW�� HM���� If a large perturbation

is indicated� the input parameter for this value should be tagged with meta�data

indicating the possible error in the value�

�	 How are application pro�les de�ned

Pro	les for applications running on a shared cluster of workstations may

be dependent on the architecture� speci	c implementations of the application� load

on relevant machines� problem size� etc� In practice� for a particular environment�

these values can be found through pro	ling tools such as gprof �GKM�� and

pixie �Sil�� by using static information based on code analysis� or by using dynamic

information based on code instrumentation� An estimated value can also be sup�

plied by the application developer� Often� such estimates are accurate enough for

the purpose of determining the component models on which to concentrate the

modeling e�ort�

�	 How are application models selected

For most applications� there will be a variety of possible component mod�

els for each task de	ned in the top�level model� Currently all model selection is

done by the model developer� but there are several guidelines that can be used� A

set of component models must be selected whose composition provides an overall

model at the level of accuracy desired� We tried to choose the model with the low�

est overhead that will accurately portray an application�s behavior� Often� there

is a trade�o� between the overhead of a model and its accuracy� For example� a

task may have two possible component models� one resulting in a high degree of
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accuracy that has a high overhead �or a high compute time�� and another much

simpler �with a lower overhead or compute time� that has a lower degree of ac�

curacy� This trade�o� must be evaluated on a per�application and per�model use

basis�

One way to reduce the work in modeling is to use the application pro	le to

narrow the number of components to be modeled to those contributing signi	cantly

to the execution time� If there are still several choices left� some ways to decide

between component models are based on�

� Available Information	 Component model selection can depend on the

sources of information that are available� Di�erent component models are

parameterized by di�erent pieces of information and� of course� only the

information that is available can be used�

� Meta�data	 We can associate additional information� meta�data� with an

input parameter or component� Meta�data is an attribute that describes the

determination or content of parameters or predictions �Ber��� and provides

a qualitative measure about the data in question� For example� this infor�

mation could be accuracy� lifetime data� or stochastic�distributional� data�

as addressed in the next chapter� These are also called QoIn� or quality

of information� measures �BW��� BWS���� Quality of information measures

can often help determine which models are more likely to meet a user�s crite�

ria� When developing component models or gathering input parameters� we

often �tag�� or associate� meta�data with the values� This is currently done

informally� for example� as a comment in the code or benchmark table�

� A�nity	 A measure or likeness or resemblance between a task and a com�

ponent model� or a�nity� can be used to select models� For example� a well

structured code with a small inner loop may lend itself to an operation count

model�

These are only guidelines� We plan to investigate more speci	c heuristics in future



��

work�

�	 How can we increase the accuracy of a structural model

Once an entire structural model is de	ned� the performance is predicted�

and the application is run� a developer can analyze the accuracy of the model and

determine a course of action� Depending on the use of the model� di�erent degrees

of accuracy may be acceptable� If a model developer determines that a given model

is not su!ciently accurate for its use� it may be desirable to modify the model to

improve its accuracy� Some possible transformations are�

� Substitute a component model� This can be done to avoid using input data

that is inaccurate or that has a high variance associated with it�

� Re�ne a component model by using alternative parameters� This can be

done when an execution property is not being modeled within a component�

� Add other component models� This can be done in accordance with the

pro	le� or when there is evidence that the pro	le is in error�

� Re�structure the top�level model� This can be done when tasks or task

interactions are not being captured by the current top�level model approach�

Again� this process is currently done by the model developer until the

the overall error and model properties are adequate� Evaluating the exact cause

of an error in a prediction is di!cult� but we have found that meta�data for the

component models and input parameters can be extremely helpful� In addition� if

a given application has been modeled previously� there may be information about

the component values used and their accuracy� Examples of this process are given

in the following sections for several applications�
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��B Modeling the Genetic Algorithm Code

This section describes the development of a structural model for a Genetic

Algorithm �GA� Master�Slave code on three di�erent clusters of workstations� To

build a structural model� 	rst we build a top�level model� and de	ne the component

models it comprises� After determining an application pro	le� we select component

models for the top�level model� Finally� we determine the accuracy of the model�

If the model is not accurate enough for the developer�s purposes� this process

may iterate� We present models for the GA on three dedicated platforms to show

the extensibility and �exibility of the structural modeling approach� Multi�user

non�dedicated platforms are addressed in the next chapter�

��B�� GA Recap

Master Computation:
Start Slaves
For i = 1 to MaxIterations
Broadcast entire population to Slave
Receive Data from all Slaves

Select next generation
Sort children

Kill Slaves
Return best child

M1
M2
M3
M4
M5
M6
M7
M8

Slave Computation:
While (True)
Receive population from Master

Randomly pick two parents
Cross parents to create child
Evaluate child

Send all children to Master

For j = 1 to NumberofChildren

S5
S6
S7

S4
S3

S1
S2

Figure 
��� Pseudocode for the Genetic Algorithm application�

A Master�Slave distributed Genetic Algorithm �GA� heuristic for the

Traveling Salesman Problem �TSP� was presented in Section �C and is reviewed



�


in the pseudocode in Figure 
��� The Master task determines �statically� how

many children each of P Slave tasks will generate� and then sends the entire popu�

lation to each of the Slaves using a Scatter routine� in this case a PVM multicast�

Each of the Slaves receives the entire population� generates their assigned number

of children randomly� and then sends results back to the Master� This sequence

iterates for a speci	ed number of generations� In our GA implementation� a Slave

process shares a processor with the Master process�

��B�� Top�level Model for GA

The top�level model for the GA is structured to re�ect the four main

components of the application� the Master task� a Scatter� the Slave tasks and a

Gather� Therefore� the top�level model has four components� There are a number

of possible interactions and synchronizations between component tasks� Three

possible top�level models for the GA are�

GAExTime
 �

Master�M� � Scatter�M�P � �Max �Slave�Si�� �Gather�P�M�
�
���

GAExTime� �

Master�M� � Scatter�M�P � � Slave�Si� �Gather�P�M�
�
��

GAExTime� � Master�M��

Max �SingleScatter�M�Si� � Slave�Si� � SingleGather�Si�M��
�
�
�

where

� GAExTime � Execution time for the application�

� M � The processor running the Master process�

� P � The set of Slave processes� S�� S�� ���SP �

� Si� The ith Slave process�processor pair�
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� Master�M� � Execution time for Master computation �lines M� M� and

M� of the pseudocode in Figure 
��� on processor M �

� Scatter�M�P �� Execution time for the Master process on M to send data

to the set of P Slaves and for it to be received �lines M
 and S��

� Max � A maximum function�

� Slave�Si� � Execution time for Slave computation on processor Si �line S


through S���

� Gather�P�M� � Execution time for all P Slaves to send data to the Master

on processor M � and for the Master to receive it �lines S� and M
��

� SingleScatter�M � Si�� Execution time for the Master to send data to Slave

Si� and for it to be received�

� SingleGather�Si�M�� Execution time for Slave Si to send data to the Mas�

ter� and for it to be received�

In a non�dedicated shared environment� each of these may also be pa�

rameterized by time in order to re�ect the dynamic properties of the system� This

chapter addresses models in a dedicated system where time�dependent variations

in behavior are typically negligible� In addition� we assume the one�time cost of

starting and killing the slaves is insigni	cant in comparison to the main computa�

tion�

Each top�level GA model is based on several assumptions about the inter�

actions of the component tasks� Top�level model 
��� shown in Figure 
�� assumes

that the time for the Slave tasks is equal to Max�Slave�Si��� that is� the amount

of time for the total Slave operation is equal to the maximum of all the individual

Slave operations� To evaluate this function� all P Slave times must be assessed�

Top�level model 
� is an option if the application is load balanced �i�e�

each slave processor receives an amount of data so that the computation of each
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Master(M)

Scatter(M,P)

Slave(S_i)

Gather(P,M)

Scatter(M,P)

Master(M)

Slave(S_i)

Gather(P,M)

+

+

+

Max

Slave2

SlaveP

Master

Master

Slave1

Gather

Scatter

Component ModelsTop-Level Model

Figure 
�� Graphic of the top�level model in Equation 
�� for the Genetic Algo�

rithm Master�Slave application� The lefthand�side is a dependency graph of the

application� and the righthand�side is a graphic for the structural model� with the

long bar representing the top�level model� and each of the shaded pieces on the far

right representing individual component models�

data partition balances the compute times�� It has a lower complexity than 
��

since it only calculates one Slave time�

Both 
�� and 
� assume that there is a synchronization between each task

represented by a component model� perhaps implemented by a barrier between each

function� This may be the case if the processor running the Master task also has

a Slave task� and the application is accurately load balanced� Top�level model 
�


applies when there is only a synchronization point at the Master component� and

the other components overlap� Note that for this top�level model� the Scatter and

Gather are de	ned in terms of a single slave instead of the set�

Each of these top�level models are suitable for Master�Slave applications
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with di�erent implementations or environments� Because of the synchronization

structure of our GA application� we will use the top�level model given in Equa�

tion 
�� for our implementations�

��B�� Modeling GA Computation Components

The second step in building a structural model for the GA is to de	ne

possible component models for the four components identi	ed by the top�level

model� We 	rst examine the computation component models� Most estimates

of computation are based on evaluating some time per data element� and then

multiplying by the number of elements being computed for the overall problem�

There are two widely used approaches for this� counting the number of operations

to compute a single element� and benchmarking� Possible computation component

models for the GA based on these approaches are�

MasterOpCt�M� � NumElt�M� �Op�Master�M� � CPU�M� �
���

SlaveOpCt�Si� � NumElt�Si� �Op�Slave� Si� � CPU�Si� �
���

MasterBM�M� � NumElt�M� �BM�Master�M� �
���

SlaveBM�Si� � NumElt�Si� �BM�Slave� Si� �
���

where

� NumElt�x� � Number of elements computed by task x� usually available

from static or dynamic code analysis� or assigned by the scheduler�

� Op�TASK� x� � Number of operations to compute task TASK for a single ele�

ment on processor x� available from using a tool like dis �mp�� using compiler

options� or static code analysis�

� CPU�x� � Dedicated time measurement to perform one operation on pro�

cessor x� generated with an a priori unit benchmark� such as described in

Section 
�A��� point 
�
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� BM�TASK� x� � Time for processor x to compute task TASK for one element�

usually generated with an a priori benchmark on a dedicated system� Several

approaches for benchmarking applications are enumerated in Section 
�A���

point ��

The accuracy of a component model depends on the accuracy of its input

parameters� To evaluate the Op�TASK� x� parameters in Equations 
�� or 
��� we

must obtain an accurate estimate of the operation count� Similarly� to evaluate the

BM�TASK� x� parameters in Equations 
�� or 
��� we need accurate benchmarks

for the Master and Slave tasks�

If contention on the machines a�ects the computation times� dedicated

time estimates will not su!ce� In this case� we may want to re	ne a component

model or it�s parameters �as described in Section 
�A��� point �� by factoring in a

value for available CPU� For the Slave task models� we could use the models�

ContentionSlaveOpCt�Si� � AvailCPU�Si� � SlaveOpCt�Si� �
���

ContentionSlaveBM�Si� � AvailCPU�Si� � SlaveBM�Si� �
���

The model for AvailCPU�Si� could be a dynamically supplied value� for exam�

ple from the Network Weather Service �Wol���� or from an analytical model of

contention� for example �FB��� LS�
� ZY���� Notice that in this case� Avail�

CPU could be a model or a supplied parameter� More adaptations for production

systems are discussed in the next chapter�

��B�� Modeling GA Communication Components

In addition to the two computational tasks� there are two communication

tasks to model� a Scatter and a Gather� On di�erent resource management systems�

and on distinct architectures controlled by a single resource management system�

both Scatter and Gather routines may be implemented di�erently�

Examining the Scatter routine 	rst� if we had the top�level model given in

Equation 
�� or 
�� then we would need to de	ne a model for the Scatter routine
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with the entire set of Slaves as the receiving group� There are three straightforward

ways to do this� If the Scatter can be represented as a series of sequential sends of

equal sizes� then the time it will take to execute will be the sum of P point�to�point

sends from the Master to the P Slaves� If the sends are executed in parallel� the

time would be the maximum of the P point�to�point sends� A third way to predict

the execution time would be to use a benchmark speci	c to the target system and

the number of Slaves� The component models for these three cases are�

Scatter
�M�P � �
PX
i��

�PtToPt�M�Si�� �
����

Scatter��M�P � �Max �PtToPt�M�Si�� �
����

Scatter��M�P � � BM�Multicast� P � �
���

where

PtToPt�x� y� � NumElt�y� � Size�Elt�
BW �x� y�

�
��
�

and

� NumElt�y� � Number of elements in a message for processor y� usually

available from static code analysis�

� Size�Elt� � Size of a single element in bytes� available from static code

analysis�

� BW �x� y� � Bandwidth in bytes per second between processor x and processor

y� available from a priori benchmarks or a dynamic measurement system�

� BM�Multicast� P � � Benchmark for multicast� parameterized by P � the

number of processors in the receiving group �the number of Slaves in this

case�� This value might be available from benchmark execution experiments

or from previous work by the developer�

The component models Scatter
 �Equation 
���� and Scatter� �Equa�

tion 
���� utilize input parameters� such as the number of Slaves� that must be
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supplied by the user or the system� as well as a component model for the point�

to�point communication times �PtToPt� Equation 
��
�� This nested structure

is common in structural modeling� Scatter� �Equation 
��� is de	ned only in

terms of the input benchmark for the multicast�

If instead of the top�level model given in Equation 
��� we were using a

top�level model such as Equation 
�
� we would need the values for SingleScat�

ter�M� Si�� that is� a single point�to�point message for each Slave� In this case we

could use the PtToPt model in Equation 
��
�

SingleScatter�M�Si� � PtToPt�M�Si� �
����

One advantage of the structural modeling approach is the ability to re	ne

a component model and add lower level details without a�ecting the higher level

structure� For any of the communication models� we might want to include other

factors that can contribute to execution time� such as startup time or contention�

In this case� we can extend the point�to�point communication model� PtToPt�

with various �non�exclusive� forms of additional information� e�g��

PtToPt��x� y� � Startup�x� �PtToPt�x� y� �
����

PtToPt��x� y� � AvailBW �x� y� t� �PtToPt�x� y� �
����

where�

� Startup�x� � Startup or latency costs for a message on processor x� and

� AvailBW �x� y� t� � Fraction of bandwidth available between processor x and

processor y at time t�

Again� hierarchical de	nitions are common when building component models as

they allow both �exibility and extensibility as needed for di�erent situations� It

should be noted that users can de	ne additional component models as needed�

Similar models could be de	ned for the Gather as well� For example�

Gather
�P�M� �
PX
i��

�PtToPt�Si�M�� �
����
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Gather��P�M� �Max �PtToPt�Si�M�� �
����

SingleGather�Si�M� � PtToPt�Si�M� �
����

Since the top�level model indicated that the Gather and Scatter are col�

lective operations� we can use either Equation 
��� or 
��� for the Gather and

either Equation 
���� 
��� or 
�� for the Scatter� Combining these possible com�

ponent models with the two choices for the Master task and the two choices for

the Slave task is shown in Figure 
�
� Note that the selection of each component

model is independent�

The next three subsections address how the GA�s component models are

selected for implementations on three dedicated platforms� the PCL Cluster� the

Linux Cluster and the SDSC Alpha Farm�

��B�� GA Application on the PCL Cluster

In this subsection we demonstrate how component models are selected

for the GA application on the PCL cluster� The top�level model on each platform

will remain the same� but the underlying component models and input parameters

will change for each distinct platform� We verify the validity of each model for

its platform experimentally on dedicated systems� The next chapter addresses

adaptations that must be made for the model to represent application behavior in

multi�user production environments�

The goal of these experiments is to show that the structural modeling

approach provides the extensibility and �exibility required to accurately represent

distributed parallel applications on distinct platforms� Problem sizes for each plat�

form are chosen to be in a range similar to those used at the present time by

the application developers� The lower end of the range was generally the smallest

problem that could run in ��
� seconds� as problem sizes smaller than that are

not typically used over networks of workstations� The upper end of the range was

generally determined by the largest problem size that could 	t in core memory for
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Figure 
�
� Graphic of model options for Genetic Algorithm code� The long white

bar represents the top�level model� and each of the patterned components on the

right represent possible component models� There are multiple component models

available for each task de	ned in the top�level model� Two of the component

models for both the Scatter and Gather include an additional component model

for PtToPt� Each of these models can be selected independently�

the platform�

We 	rst implemented the GA application on networked resources in the

UCSD Parallel Computation Lab� The con	guration includes a Sparc �� a Sparc ��

and two Ultra Sparc�s� all running Solaris and connected over Ethernet as described

in Section �A�

The application developer �Bha��� supplied us with an application pro	le

for this application and platform� given in Table 
��� It indicated that the Slave

task would have the greatest impact on performance� in part due to the slow

processor speed of several of the machines� and the fact that the message sizes
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Master�M� $
Scatter�M �P � $
Slave�Si� ��$

Gather�P �M� $

Table 
��� Pro	le of GA Code on PCL cluster�

were small and the networks were unloaded� This is a clear cut case of a user

deciding on the importance of tasks based on the application pro	le� as introduced

in Section 
�A�� Therefore� we concentrated on modeling the Slave component �a

computation task model��

We analyzed two choices for the Slave component� an operation count

model and a benchmark model�

SlaveOpCt�Si� � NumElt�Si� �Op�Slave� i� � CPU�Si�
� N

P
� OP � CPU�Si�

�
���

SlaveBM�Si� � NumElt�Si� �BM�Slave� Si�
� N

P
�BM�Slave� Si�

�
���

where

� N � The problem size� in this case the size of the population�

� P � The number of processors�

� NumElt�Si�� The number of elements assigned to each slave� in this case
N
P
�

as ascertained from static code analysis�

� OP� The number of operations in the Slave routine� 
������
 real opera�

tions� supplied by the application developer� and tagged with the meta�data

that this value may be incorrect due to the non�determinism and irregular

structure of the inner loops of the GA�

� CPU�Si�� The time per arithmetic operation� This is given in Table 
� for

the machines in the PCL cluster�
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� BM�Slave� Si�� Benchmark for the Slave routine� given in Table 
�
�

Machine Integer Integer Real Real
Name Addition Multiplication Addition Multiplication

Thing� ������ sec ��� sec ������ sec ������ sec
Thing ����� sec ���� sec ������ sec ����
� sec
Lorax ����� sec ����� sec �� sec ���� sec
Picard ��� sec ����� sec ���� sec ��� sec

Table 
�� Times in seconds for arithmetic operations on PCL Cluster Machines�

means over � runs of ��������� operations�

Machine Name BM�Slave� Si�

Thing� ������%���� sec
element

Thing ����

 %���� sec
element

Lorax ���% ���� sec
element

Picard 
�
�
�� % ���� sec
element

Table 
�
� GA Benchmarks on PCL cluster for problem size of ���� mean of �

values�

Our 	rst choice� driven by the availability of input information� was to

model the Slave computation using an operation count model� however� this model

was determined to be inaccurate in comparison with actual values as shown in

Figure 
��� It is possible that this was due to inaccurate data for the operation

count� as indicated by the meta�data tagged to that input parameter�

Therefore� we chose another component model for the Slave component

that avoided the potentially faulty data� and used a benchmark model� The bench�

mark model achieved results within ���$ of the actual run times until the problem

size began to spill out of core memory at a problem size of ���� At this point� the

error is �$ and increasing� Figure 
�� shows a comparison of these two models �an

operation count model� and a benchmark model� as compared to actual execution

time of the GA code� The problem size in the 	gure is the number of tours�
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Figure 
��� Actual times versus model times for GA Code on PCL platform using

operation count and benchmark models when communication is set to zero�

If we wanted to accurately model larger �or smaller �Ger���� problem

sizes� we would need more detailed models that address how the execution time

is being spent� For example� we might want a di�erent component model for the

Slave task when the problem size spills from core memory that would calculate

the time to compute the elements that 	t within memory� and then the time to

compute the rest� which would include a memory access time� for example�

LargeSlaveBM�Si� �
�
MemSize�Si�
Size�Elt�

� SlaveBM�Si�
�
��h

NumElt�Si�
Size�Elt�

� MemSize�Si�
Size�Elt�

i
� �MemAccess�Si� � SlaveBM�Si��

� �
��

Other formulas are possible as well� While more accurate� use of this version for

the component model would add overhead and complexity to the computation of

the top�level model and is unnecessary for the problem sizes that 	t within core

memory�
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We also evaluated several models for the communication components�

Scatter
�M�P � �
PX
i��

�PtToPt�M�Si��

�
PX
i��

�
NumElt�Si� � Size�Elt�

BW �M�Si�

�

�
PX
i��

�
N � �bytes

BW �M�Si�

�
�
�
�

Scatter��M�P � �
PX
i��

�PtToPt��M�Si��

�
PX
i��

�
fNumElt�Si� � Size�Elt�

BW �M�Si�
g� Startup�M�

�

�
PX
i��

�
fN � �bytes

BW �M�Si�
g� Startup�M�

�
�
���

Gather
�P�M� �
PX
i��

�PtToPt�Si�M��

�
PX
i��

�
NumElt�Si� � Size�Elt�

BW �Si�M�

�

�
PX
i��

�
N

P
� �bytes

BW �Si�M�

�
�
���

Gather��P�M� �
PX
i��

�PtToPt��Si�M��

�
PX
i��

�
fNumElt�Si� � Size�Elt�

BW �Si�M�
g� Startup�Si�

�

�
PX
i��

�
fN
P
� �bytes

BW �Si�M�
g� Startup�Si�

�
�
���

where

� N � Problem size�

� P � Number of processors�

� NumElt�Si�� Number of elements in a message� For Scatter this is the entire

population� or N � for the Gather� each message has the updated portion of

the population or N
P
�
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� Size�Elt�� The size of an element� in this case 
 doubles� or � bytes� from

static code analysis�

� BW �x� y�� Bandwidth between processor x and y� shown in Table 
��� from

an a priori benchmark�

� Startup�x�� The startup message time on processor x� in this case including

both latency and packing cost� given in Table 
��� from an a priori bench�

mark�

From � To Thing� Thing Lorax Picard

Thing� ����� ������ ����

 ������
Thing ������ ���� ������ ������
Lorax ����� ����� ���� ���
�
Picard ������ ������ ������ 
�����

Table 
��� Bandwidth between processors of the PCL Cluster in MBytes�Sec�

These values were generated using a benchmark that sends ��� messages of a

speci	ed message size from processor x to processor y� and a single message con�

sisting of a one byte acknowledgment from processor y to processor x after ���

messages�

Thing� Thing Lorax Picard

Thing� 
��������� n �
��������� n �����������
 n ���� ������� n
Thing �
��������� n 
�������� n ����������� n ���
�������� n
Lorax ���������
 n ����� ������ n �������
� n ���������� n
Picard ���������� n ��������
�� n 
�
������� n ���������

 n

Table 
��� Startup costs for messages on PCL Cluster in � Sec� equal to Latency

plus Packing time for message of n bytes�

Using distinct communication components in the top�level model had no

e�ect on the accuracy of the prediction� most likely because the application spends

very little of the overall time communicating in this model�
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��B�	 GA on Linux Cluster

Moving the GA application to the Linux cluster involved changing the

component models� On this cluster� the application had a di�erent pro	le� as

shown in Table 
��� Since the machines on this cluster are much faster than those

in the PCL cluster� but the bandwidth does not change as much� the commu�

nication portions of the code became much more critical to the performance of

the application� With the faster processors� only about two�thirds of the time was

spent doing computation� almost entirely in the Slave tasks� and the rest was spent

on communication� Of the communication costs� two thirds of the time was spent

in the Scatter� and one third is spent in the Gather�

Master�M� $
Scatter�M �P � $
Slave�Si� ��$

Gather�P � M� ��$

Table 
��� Pro	le of GA Code on Linux cluster�

The top�level model did not change� however the available component

models did� We no longer had an operation count model to base SlaveOpCt on�

due to the change in system �and therefore� change in the number of operations

an inner loop would have� and the decision to not re�evaluate this value on a new

platform due to the large error on the previous platform� The following component

models were used for the Linux cluster�

Scatter�M�Si� � P �PtToPt�M�Si�

� P
h
NumElt�Si� � Size�Elt�

BW �M�Si�

i
� P

h
N � � doubles��	 bytes�double�

�����
 MBytes�sec

i �
���

Max�Slave�Si�� � NumElt�Si� �BM�Slave� Si�
� N

P
� ������ � �����sec

�
���
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Gather�Si�M� � P �PtToPt�Si�M�
� P

h
NumElt�M� � Size�Elt�

BW �Si�M�

i
� P

h
N
P
� � doubles��	 bytes�double�

�����
 MBytes�sec

i �
���

where

� N � The problem size�

� P � The number of processors�

� NumElt�Si�� The number of elements� For Scatter this is N � for the Slave

task this is N
P
� for the Gather this is N

P
� This came from static code analysis�

� Size�Elt�� Size of a single element� 
 doubles or � bytes�

� BW �x� y�� Bandwidth between processor x and y� We used a value of ����

MBytes�sec for this since all the processors were the same� This value was

supplied by the Network Weather Service as an average for a quiescent sys�

tem�

� BM�Slave� Si�� Benchmark for Slave computation on processor Si� This was

supplied by single processor runs of the code on a problem size of ��� �since

the medial problem size of interest is ���� and the number of processors is

��� equal to �����%���� seconds per element�

Figure 
�� shows actual times versus modeled times using the benchmark

slave model with and without communication models models set to zero� With

the communication models� we achieve predictions within ���$ of the mean actual

values until the large increase in execution time� most likely due to a spill from

in�core memory after the ����� problem size� At this point� the error is almost

�$ and increasing�

In summary� on the Linux platform we were able to use a similar bench�

mark model for the slave component to the one used for the PCL cluster with
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Figure 
��� Actual times versus model times for GA Code on Linux cluster platform

using benchmark slave model with and without communication models set to zero�

modi	ed benchmarks� but it was necessary to analyze the communication com�

ponents as well �as opposed to setting them equal to zero�� as indicated by the

application pro	le�

��B�
 GA on Alpha Farm Cluster

Moving to the Alpha farm� we were back to the situation of having slower

processors relative to the network speeds� and the application pro	le changed� as

shown in Table 
��� Like on the PCL cluster� most of the time is spent computing

the Slave tasks� The top�level model did not change� We used the component

model given in Equation 
�
��
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Master�M� �$
Scatter�M �P � 
$
Slave�Si� ��$

Gather�P �M� $

Table 
��� Pro	le of GA Code on Alpha Farm cluster�

Max�Slave�Si�� � Max�NumElt�Si� �BM�Slave� Si��
� Max�N

P
� ��
�� � ����sec�

�
�
��

where

� N � The problem size�

� P � The number of processors�

� NumElt�Si�� The number of elements� for the Slave task this is
N
P
� This

came from static code analysis�

� Size�Elt�� Size of a single element� �%N bytes�

� BM�Slave� Si�� A benchmark for the GA� supplied by single processor runs

of the code on a problem size of 
�� which is the medial problem size divided

by � slaves� equal to ��
��%���� seconds per element�

Using these models� we achieved predictions within ���$� as shown in Figure 
���

��B�� Discussion

This section presented the full development of a structural model for a

Master�Slave GA application� Choices for the top�level model were analyzed and

the top�level model in Equation 
�� was chosen based on the interactions and

synchronization it represented� Component models for the computation and com�

munication tasks depicted in the top�level model were outlined� and then fully
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Figure 
��� Actual times versus model times for GA Code on Alpha Farm platform

using benchmark models where Scatter�� and Gather � ��

de	ned for each of three dedicated platforms� Tables 
��� 
��� 
��� and 
��� show

a summary of the component models and their input parameters� In the follow�

ing sections we will show only the tables and not the model derivation for each

platform�

The goal of the experiments in these subsections was to show the �exible

and adaptive nature of structural modeling� We adapted models for three plat�

forms easily� and in each case� achieved good predictions of the actual values for

a wide range of problem sizes� The same top�level model was used in each case�

only the lower level details in the component models were adjusted to 	t the new

implementations�
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SlaveBM�Si�
NumElt�Si� BM�Slave� Si�

PCL N
P

Table 
�

Linux Cluster N

P
����� % ���� sec

Alpha Farm N
P

��
�� % ���� sec

Table 
��� Summary of the computation component models for SlaveBM used

for the GA application on three dedicated platforms�

SlaveOpCt�Si�
NumElt�Si� Op�Slave� Si� CPU�Si�

PCL N
P

OP Table 
�

Table 
��� Summary of the computation component model for SlaveOpCt used

for the GA application�

Scatter
NumElt�Si� Size�Elt� BW �M�Si�

PCL N � bytes Table 
��
Linux N � bytes ���� MBytes�sec

Table 
���� Summary of the Scatter component model used for the GA application

on two dedicated machines�

Gather
NumElt�Si� Size�Elt� BW �Si�M�

PCL N
P

� bytes Table 
��
Linux N

P
� bytes ���� MBytes�sec

Table 
���� Summary of theGather component model used for the GA application

on two dedicated machines�
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��C Modeling the SOR Benchmark

This section details building a model for a Successive Over�Relaxation

�SOR� benchmark� a member of the Regular SPMD application class� In the SOR

implementation� the application is divided into �red� and �black� phases� with

communication and computation alternating for each �Bri���� This repeats for a

prede	ned number of iterations� as described in Section �E��� For this application�

like the GA� we implemented the code in three dedicated settings�

��C�� Top�level Model for SOR

Given the four�task structure of the SOR code� possible top�level models

for this application include�

SORExTime
 �

NumIts � Max � RedComp�i� � RedComm�i� �

BlackComp�i� � BlackComm�i� � �

�
�
��

SORExTime� �

NumIts � Max �RedComp�i�� �Max �RedComm�i���

Max �BlackComp�i�� �Max �BlackComm�i�� �

�
�
�

SORExTime� �
NumItsX
t��

�Iteration�t�� where

Iteration�t� �

Max �RedComp�i� t�� �Max �RedComm�i� t �&����

Max �BlackComp�i� t �&��� �Max �BlackComm�i� t�&���

�
�

�

and where

� NumIts � The number of iterations�

� Max � A maximum function�
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� RedComp�i�� Execution time for the Red Computation phase on processor

i�

� RedComm�i�� Time to send and receive receive data between processor i

and its neighbors during the Red phase�

� BlackComp�i�� Execution time for the Black Computation phase on pro�

cessor i�

� BlackComm�i�� Time to send and receive receive data between processor i

and its neighbors during the Black phase�

In the top�level equation given in Equation 
�
�� the time for a single iter�

ation is equivalent to the time for the slowest processor to complete that iteration�

assuming that there is synchronization only once an iteration�

In our implementation� this code is decomposed into strips and employs a

	ve�point stencil communication� so synchronization occurs only between proces�

sors sharing data� not over the entire cluster� Note that it is possible for processors

that are not neighbors to become unsynchronized� For example� when data is de�

composed into strips� delays in communication between a processor executing data

strip Si and its neighbor executing Si�� can retard communication between the pro�

cessor executing strip Si�� and the processor executing strip Si��� In particular�

accumulating communication delays can create a kind of �skew� that can delay

execution over all strips for each iteration� This is depicted in Figure 
��� If the

work is load balanced across all processors to 	t their execution capacities� the

skew between processors may be reduced�

If skew were to become an issue for an application� we could use the

top�level model given in Equation 
�
 instead of 
�
�� This would allow for the

delays due to skew to be accounted for by calculating the maximum time for each

component individually�

If skew was very severe or unpredictable� due to contention or poor load�

balancing for example� an application developer might try to use predictions of
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Legend:
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Figure 
��� Skew can be generated by un�balanced processors sharing data� In this

	gure� the dashed lines indicated message wait time in the message queue� Note

that as P� a�ects P� then P�s wait times a�ect the start times for P
�

this contention from an on�line monitor such as the Network Weather Service�

In this case� the top�level model given in Equation 
�

 with its additional time

parameterization might be used�

In the following� we demonstrate the development of a model for SOR

using the top�level model from Equation 
�
� which is well suited to our imple�

mentations and environment�

��C�� Component Models for SOR

Once we decide on a top�level model� we need to de	ne the underlying

component models for the computation and communication� The two communica�

tion models� unlike the Gather and Scatter for a Master�Slave application� contain

both sends and receives� Component models for them are�

RedComm�i� � SendLR�i� �ReceLR�i� �
�
��
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BlackComm�i� � SendLR�i� �ReceLR�i� �
�
��

where

SendLR�i� � PtToPt�i� i� �� �PtToPt�i� i� �� �
�
��

ReceLR�i� � Process�i� �� �Process�i� �� �
�
��

and

Process�x� � NumElt�x� � Size�Elt� � Unpack�x� �
�
��

where

� PtToPt� as de	ned in Equation 
��
�

� Unpack�x�� Time to unpack a byte for processor x�

For computation� we can use models similar to those from the GA application�

RedCompOpCt�i� � NumElts�i� �Op�Red� i� � CPU�i� �
�
��

BlackCompOpCt�i� � NumElts�i� �Op�Black� i� � CPU�i� �
����

RedCompBM�i� � NumElts�i� �BM�Red� i� �
����

BlackCompBM�i� � NumElts�i� �BM�Black� i� �
���

where

� NumElt�i� � Number of elements calculated by processor i�

� Op�TASK� i� � Number of operations to compute task TASK for a single element

on processor i�

� CPU�i� � Time to perform one operation on processor i�

� BM�TASK� i� � Time for processor i to compute task TASK for one element�
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��C�� SOR on the PCL Cluster

Our initial application pro	le for the PCL cluster� shown in Table 
���

suggested the SOR would spend most of it�s execution time computing the Red�

Comp and BlackComp tasks on the network of machines due to the relative slow�

ness of several workstations compared to the speed of the unloaded network� There�

fore component models for the two computation components are particularly im�

portant to the overall performance of the top�level model�

RedComp�i� ��$
RedComm�i� 
$
BlackComp�i� ��$
BlackComm�i� 
$

Table 
��� Application Pro	le for SOR benchmark on PCL cluster�

In order to estimate the computation for the slave task� we had several

choices� We could use an operation count model �as depicted in Equation 
�
� and

shown parameterized in Equation 
���� or a benchmark model �as depicted in 
����

and shown parameterized in Equation 
����� Using the benchmark model� we have

two choices for benchmarking the SOR code� BM�Red�P�i� in Equation 
���� a

benchmark based on running the SOR for one processor at a problem size of

medial problem size
number of slaves

number of slaves� and BM�RedNC�i� in Equation 
��
� a benchmark

based on running a version of the SOR code that had no communication in it for

the medial problem size of the entire application space� Using the RedComp as an

example� the models are�

RedCompBMNC�i� � NumElts�i� �BM�RedNC� i�
� �N � N

P
� �BM�RedNC� i� �
��
�
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RedCompBM
P�i� � NumElts�i� �BM�Red�P� i�
� �N � N

P
� �BM�Red�P� i� �
����

RedCompOpCt�i� � NumElts�i� �Op�Red� i� � CPU�i�
� �N � N

P
� � OP � CPU�i�

�
����

where

� N � The problem size�

� NumElts�i�� The number of elements calculate by processor i� This is equal

to N � N
P
� or N

P
columns each of size N �

� BM�RedNC� i�� Benchmark for Red Computation� This is based on N proces�

sor with the no communication benchmark on processor i� given in Table 
��
�

mean over � runs�

� BM�Red�P� i�� Benchmark for Red Computation� This is based on the ��

processor benchmark on processor i� given in Table 
����

� Op�Red� i�� Operation count for Red Computation� This is obtained from

dynamic code analysis�

� CPU�i�� Time per operation on processor i� This is given in Table 
� in

the last section� from a priori benchmark runs�

For this set of experiments� shown in Figure 
��� the one�processor bench�

mark model was within �$ of actual values� the zero�communication benchmark

model was within ��$ of actual values� and the operation count model achieved

predictions within ���$ of actual execution time� all until the problem size spilled

from memory� In order to model larger problem sizes� the model would need to be
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Machine Time

Thing� ������ � ���� sec
point

Thing ���
�� � ���� sec
point

Lorax ��� � ���� sec
point

Picard 
����� � ���� sec
point

Table 
��
� Benchmark for RedComp and BlackComp based on SOR benchmark

using no communication version of SOR for problem size of ��� over � processors�

with a mean of � runs�

Machine Time

Thing� ������ � ���� sec
point

Thing ����
 � ���� sec
point

Lorax 
����
 � ���� sec
point

Picard 
��
�
 � ���� sec
point

Table 
���� Benchmark for RedComp based on SOR benchmark for one processor

at problem size of ����

modi	ed to included memory� Note that this also demonstrates the error in assum�

ing a �at memory� as Gustafson described in �Gus���� This model is also inaccurate

for the smallest problem sizes where factors that are amortized for larger problem

sizes become much more apparent �Ger���� As such� this application reinforces the

usability of this approach in identifying models within a given problem range� and

allowing �exibility as needed over a range of problem sizes and�or implementations�

��C�� SOR on Linux Cluster and SDSC Alpha Farm

We ported the SOR benchmark from the PCL cluster to the Linux clus�

ter and Alpha farm platforms� In these setting� the models were roughly the

same as in the PCL setting� The application pro	les for these platforms are given

in Table 
���� The task component models for the top�level SOR model repre�
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Figure 
��� Graph of SOR on dedicated PCL Cluster showing results of actual

execution times and models� Note that this graph is on a log�linear scale to show

the error in the highest and lowest problem sizes�

sented in Equation 
�
�� are given with platform�speci	c parameterizations in Ta�

bles 
���� 
���� and 
���� referring to Equations 
�
� through 
�� for computation�

and referring to Equations 
�
� through 
�
� for communication�

For these systems� benchmark values for the computation components

were calculated by running the SOR on a single processor on a problem size of

medial value
number of slaves

� and then averaging � runs� Since the processors within the Linux

cluster and the Alpha farm are identical� the same value can be used for all of them�

Values for the operation count models were found using the �s option when compil�

ing the code on their respective platforms� Benchmarks for the time per operation

were found by running a simple benchmark that computed ��� operations� and

averaging them� Bandwidth numbers for the Linux cluster were supplied by the

Network Weather Service running on a quiescent system� and values for Unpack�i�
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Linux Cluster Alpha Farm
RedComp�i� 
�$ ��$
RedComm�i� �$ �$
BlackComp�i� 
�$ ��$
BlackComm�i� �$ �$

Table 
���� Application Pro	le for SOR benchmark on Linux cluster and Alpha

Farm�

CompBM�i�
NumElt�Si� BM�Red� i�

Linux Cluster N � N
P

����
�� % ����

Alpha Farm N � N
P

���
��� % ����

Table 
���� Summary of the computation component models for benchmark models

for RedComp used in de	ning the SOR structural model on two dedicated plat�

forms� exact component model de	nitions are given in Equations 
��� and 
���

were found using a simple PVM benchmark to measure the time to unpack a

message�

Figure 
�� shows the resulting models and actual execution times for each

problem size on the Linux cluster� and Figure 
�� shows the same for the Alpha

farm� The former achieved results within �$ for the benchmark model� but the

operation count model was o� by 
�$� Both Alpha farm models were within ���$

of the actual values�

��C�� Discussion

In this section we derived component models for the Regular SPMD Suc�

cessive Over�Relaxation code on three dedicated platforms� The �exibility of struc�

tural modeling was shown by the ease of adaption from one platform to another�

adding component models when indicted by the application pro	le� Several types

of benchmarks were used�
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CompOpCt�i�
NumElt�Si� Op�Red� i� CPU�i�
NumElt�Si� RealAdds RealMults RealAdds RealMults

Linux N 
  ���� % ���� ������ % ����

Alpha N � 
 ���
 % ���� ���� % ����

Table 
���� Summary of the computation component models for benchmark models

for RedComp used in de	ning the SOR structural model on two dedicated plat�

forms� exact component model de	nitions are given in Equations 
�
� and 
����

RedComm�i�
SendLR�i� ReceLR�i�

PtToPt�i� i��� PtToPt�i� i��� Process�i� Process�i�
NumElt�i� Size�Elt� BW�i� i��� BW�i� i��� UnPack�i�

N � Bytes ���� MBytes
sec

���� MBytes
sec


���
%���� sec
Mbyte

Table 
���� Summary of the computation component models for benchmark mod�

els for RedComm used in de	ning the SOR structural model on the dedicated

Linux cluster� exact component model de	nitions are given in Equations 
�
�

through 
�
��
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Figure 
��� Actual times versus benchmark and operation count model times for

SOR benchmark on dedicated Linux cluster�
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Figure 
���� Actual times versus model times for SOR Code on Alpha Farm plat�

form using benchmark model and operation count model �communication � ���
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��D Other Applications

To show the �exibility and accuracy of the structural modeling approach�

we implemented a test suite of applications over the three dedicated platforms� In

addition to demonstrating the �exibility of the structural modeling approach� we

use these applications to demonstrate courses of action to take when a model does

not meet the accuracy requirement of the model developer� for example in the case

of the N�Body code� presented in Section 
�D��� In section 
�D� we demonstrate

adjustments needed for dynamic load balancing using the HiTemp code� The LU

code �Section 
�D�
� and the SP code �Section 
�D��� also demonstrate additional

benchmarking techniques�

��D�� Modeling the N�body Code

As part of the class of Master�Slave codes� we implemented a simple N�

body simulation� also known as a particle simulation� to simulate the motion of

planetary bodies� discussed in Section �C� For each iteration� the Master sends

the entire set of particles to each Slave� and also assigns a portion of the particles

to each processor to calculate the next iteration of values� The Slaves calculate the

new positions and velocities for their assigned particles� and then send this data

back to the Master process�

This implementation had a Slave process running on the Master processor�

and the top�level model was�

NBodyExTime �

Master�M� � Scatter�M�P � �Max �Slave�Si�� �Gather�M�P �

�
����

As with the GA application� component models were determined for each platform

as needed� The basic models possible were similar to those already described in

the previous section� and are given in Tables 
�� through 
�
� The application

pro	le for the PCL and Linux clusters is presented in Table 
����
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PCL Cluster Linux Cluster

Master�M� �$ 
$
Scatter�M�P� �$ �$
Max�Slave�Si�� ��$ ��$
Gather�M�P� $ �
$

Table 
���� Pro	le for N�Body code on the PCL cluster and the Linux cluster�

SlaveOpCt�Si�
NumElt�Si� Op�Red� i� Elt� CPU�i�
NumElt�Si� RealAdds RealMults RealAdds RealMults

PCL N�N
P

� � Table 
�

Table 
��� Summary of the computation component model for operation count

used for the N�body application�

The application pro	le on the PCL cluster indicated that communication

costs for the N�body code were low� Consequently it seemed feasible to set the

communication component models to zero without too much adverse a�ect on

the over all prediction� at a savings of model development time� However� the

zero communication model resulted in predictions that were o� by �$ �when

computation was modeled using a benchmark�� and o� by ��$ �when computation

was modeled using an operation count�� as shown in Figure 
����

It was determined that additional components needed to be modeled to

re�ect the communication time �see Section 
�A���� as the model developer believed

SlaveBM�i�
NumElt�Si� BM�Slave� Si�

PCL Cluster N�N
P

Table 
��
Linux Cluster N�N

P
������� % ����

Table 
��� Summary of the computation component models for benchmark models

de	ning the N�body structural model on two dedicated platforms�
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Scatter
NumElt�Si� Size�Elt� BW �M�Si�

PCL N �� Bytes Table 
��
Linux N �� Bytes ����� MBytes�sec

Table 
�� Summary of the Scatter component model used for the N�body ap�

plication on two dedicated machines�

Gather
NumElt�Si� Size�Elt� BW �Si�M�

PCL N
P

�� Bytes Table 
��
Linux N

P
�� Bytes ���� MBytes�sec

Table 
�
� Summary of the Gather component model used for the N�body ap�

plication on two dedicated machines�

both SlaveComp models to be accurate� a decision reinforced by the fact that

they both calculated similar results for the computation only� Using the Gather

and Scatter models shown in Tables 
� and 
�
� we achieved predictions within

�$ for the benchmark model and �$ for the operation count model on the PCL

cluster� as shown in Figure 
��� This application on the PCL illustrated actions

by a model developer when a pro	le might be in error� and additional component

models are needed� The exact course of action is a judgment call� Instead of

adding component models� the model developer could have decided to re	ne the

Machine Time �sec�

Thing� ��
��� % ���


Thing ��

��� % ���


Lorax ��
�� % ���


Picard �����
 % ���


Table 
��� Benchmarks for one processor N�body code on the PCL cluster at ���

problem size� mean over � runs�
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Figure 
���� Graph showing benchmark and operation count models without com�

munication� and actual values and means for N�Body code on PCL Cluster�

computation benchmarks� or to examine any input parameters in common for their

validity�

On the Linux cluster� we had only a benchmark model available� and

achieved predictions within ��$ for most of the range or problem sizes� the excep�

tion being for the smallest problem size where we were o� almost ���$ in relative

terms� and by ��� seconds in absolute terms� Also of interest for this application is

the noticeable behavior of the benchmark approach � the error for the medial value

of ���� is practically nil� but increases in either direction� as shown in Figure 
��
�
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Figure 
��� Graph showing benchmark and operation count models with commu�

nication models� with actual values and means for N�Body code on PCL Cluster�
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� Graph of N�body application on Linux cluster� modeled versus actual

execution times�
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��D�� Modeling the Hi�Temp Code

The Hi�Temperature Superconductor code� introduced in Section �C� is a

Master�Slave Request style code� It uses a �pool of jobs� approach� The Master is

started� and it spawns a Slave task on each available host� Each Slave then requests

a job from the available job pool held by the Master� does the computation needed

for that job� and returns the result� This continues until the pool of jobs is empty�

The top�level model used for this code re�ected its Request�style imple�

mentation� It consists of the setup time for the Master process� then the time for

one slave process to receive a job� compute that job� and then return the results

of that job to the Master for its entire set of jobs� This is�

HiTempExTime �MasterSetup�M�

� Maxf
NumJobsOnSiX

j��

�ReceiveJob�M�Si� �CompJob�Si�

�ReturnJob�Si�M��g
�
����

Unlike the Master�Slave codes previously considered in this chapter� the

exact number of jobs that get assigned to a processor� parameter NumJobsOnSi�

is not determined by the Master� rather� the jobs are requested one at a time by

the slaves� In addition� this implementation dynamically requests jobs� although

in a dedicated setting the di�erence between dynamic and static requesting isn�t

as large as it would be in a production system� To predict the execution time of a

Request�style application we still need to have an estimate for the number of jobs

a processor is likely to request� As we�ll see for the heterogeneous PCL cluster� this

value can be determined using a benchmark in a dedicated setting� but is much

more di!cult to estimate for production environments�

Another way to estimate the execution time of a dynamically allocated

job �SW��b� is to estimate the maximum run time for a problem size of n� �� and
assume a worst case scenario in which the last job is started at that time on the

slowest processor� A top�level model for this scenario is�
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HiTempExTime �MasterSetup�M�

�Maxf
NumJobsOnSiX

j��

�ReceiveJob�M�Si� �CompJob�Si�

�ReturnJob�Si�M��g
�MaxfReceiveJob�M�SlowestSlave�

�CompJob�SlowestSlave� �ReturnJob�SlowestSlave�M��g

�
����

This simpli	es to the top�level model in Equation 
��� in the implicit

worst case� In many environments� such as the PCL environment detailed below�

using Equation 
��� will result in more accurate predictions�

Linux Cluster PCL Cluster
Master�M� $ �$

ReceiveJob�M�Si� �$ 
$
CompJob�Si� ��$ ��$

ReturnJob�Si�M� �$ 
$

Table 
��� Pro	le for Hi�Temp code on the Linux and PCL Clusters�

CompJob�Si�

Linux Cluster ����� % ���� sec
element

PCL Cluster Table 
��

Table 
��� Component model for CompJob�Si� for Linux and PCL clusters�

The application pro	le for the HiTemp code on the Linux cluster and

PCL cluster is given in Table 
��� and the predictions for component model used

are summarized in Table 
��� The other element in the top�level model that must

be determined is a value for the input parameter NumJobsOnSi�

In order to predict the execution time of this application we 	rst need to

predict how many jobs each processor would calculate� and then determine which

processor would be calculating the last job� For the dedicated Linux cluster� the
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Machine Time

Thing� ������� sec
element

Thing ������� sec
element

Lorax 
����� sec
element

Picard 
��
� sec
element

Table 
��� Benchmarks for Hi�Temp code on PCL cluster� mean of � runs for

problem size ���

work is divided evenly over the � slaves� so this value is simply N
P
� For the PCL

cluster� this is a harder value to determine� From the benchmark given in Ta�

ble 
��� it can be shown that the last running job would be computed by either

Lorax or Picard� since they would request their last job before either Thing� or

Thing would� However� calculating this depended on having very exact infor�

mation� In Table 
�� we chart the 	rst few seconds of execution time on the

PCL cluster for the HiTemp application� and in Table 
�� we chart the last few

seconds� from t � �� seconds to completion time for a problem size of ��� Both

these tables are based on the benchmarks given in Table 
�� and assume that

they are ���$ accurate� From Table 
��� we can calculate that Picard and Lorax

would compute approximately ��$ of the overall jobs each� while each of Thing�

and Thing would compute approximately ��$ of the jobs�

Using this model and benchmark� we achieved predictions within �$ on

the Linux cluster and 
$ on the PCL cluster� as shown in Figures 
��� and 
����

One of the interesting features of this application was the determination of the

input parameters NumJobsOnSi� In a production environment� or one in which

the benchmark information was not so carefully calculated as ours� we might want

to use the more conservative top�level model given in Equation 
���� and estimate

the runtime for n� � jobs� then add on the time for the nth job to be run on the
slowest processor�
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Time Thing� Thing Lorax Picard

��� �  
 �
����� �
����� �
���� �
���� �
��� �
��� ��

��� ��

��� �

��� �


��� ��
��
� ��
���� ��

Table 
��� Chart showing 	rst seconds of execution of HiTemp application on

PCL cluster� using benchmarks given in Table 
��� Numbers represent job number

stared on processor i at time t�

Time Thing� Thing Lorax Picard

�� ��� ��� ��� ���
����� ���
����� ���
����� ���
����� ���
����� ��
����� done
���
� done
��� done
�
�
 done

Table 
��� Chart showing 	rst seconds of execution of HiTemp application on

PCL cluster� using benchmarks given in Table 
��� Numbers represent start time

for job on processor i at time t� and �done� indicates when a processor is 	nished

computing�
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Figure 
���� Graph of actual versus modeled execution times for Hi�Temp code on

Linux cluster�
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Figure 
���� Graph showing results of benchmark model and actual execution

times for Hi�Temperature code on PCL cluster�
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��D�� Modeling the LU Benchmark

In addition to the Master�Slave applications� we examined several Regular

SPMD benchmarks� one of which was an LU decomposition� The LU algorithm

	nds a lower triangular and an upper triangular matrix such that L �U � A for an

original matrix A� It works on diagonals that progressively sweep from one corner

on a given z plane to the opposite corner of the same z plane� thereupon proceeding

to the next z plane� There are a relatively large number of small communications

of � words each�

This code is structured so that the natural division isn�t at the iteration�

it is an entire application run� This code has an easy�to�calculate number of mes�

sages per entire application run� and a computation size that depends on the size

of the area under work� that changes for every iteration� Therefore� the applica�

tion developer decided to examine the execution time as just communication and

computation �And���� The top�level model used is given in Equation 
���� The

application pro	le for the Linux and PCL cluster are shown in Table 
�
�� The

component models used are given in Tables 
�
� and 
�
�

LUExTime � Comp�Comm �
����

Linux Cluster PCL Cluster

Comp ��$ ��$
Comm 
�$ �$

Table 
�
�� Application Pro	le for LU benchmark on Linux cluster

This is a fairly large code� consisting of 

 Fortran 	les and over �����

lines of code� Because of this� it was non�trivial to calculate operation counts for

the computation as a separate entity� Benchmarking the code presented a more

e!cient approach� We examined three ways to benchmark the code�

�� Run a one�processor version of the code� This resulted in a large error for this
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Comm
NumMsgs Max � Lat�x��

�P��n�����n������ � Max � Lat�x��

�n� �� sec

Table 
�
�� Communication component models for LU benchmark on Linux cluster

Comp

Linux BM�P�N��Comm
N�

Cluster ����� % ���� sec
elt

PCL BM�P�N�
N�

Cluster 
��� % ���� sec
elt

Table 
�
� Computation component models for LU benchmark on Linux cluster

and PCL cluster

code� possibly due to scaling issues associated with the code� The problem

size for the application scales as N�� To approximate a � processor version

of the n � 
� problem size on one processor required running a problem size

of �� on one processor� In general� this did not scale well for the application�

� Comment out the communication routines� as we did in the SOR code �Equa�

tion 
��
�� and benchmark the resulting computation routines� This was not

an option because of the way the code was structured�


� Benchmark the code as a whole� and subtract the communication time to

achieve a computation�only estimate� We estimated the communication by

modeling it as shown in Table 
�
�� and subtracted this from the overall time

of a medial problem size �
�� to achieve a computation benchmark for the

Linux cluster�

It is also possible to model the application as one large benchmark �with

computation and communication together�� and scale that by the problem size�

In the graph given in Figure 
��� we compare this approach with benchmarking
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approach 
 above� and can see that this one�part model is both greater than or

less than the medial our approximations are increasingly in error� and growing on

both ends away from the medial problem size� This is due to the fact that we

scale the benchmark by the problem size cubed� but the communication part of

the execution time scales by n� which is not re�ected in the one�part model�

On the PCL cluster� due to the larger computation�communication ratio

exhibited by the platform� we could use the simple one part model based solely

on the benchmark for the entire application at a medial problem size� This is

similar to the use of communication components in previous applications in which

we could set the communication component models to zero� Using this approach

resulted in a model on the Linux cluster that estimated the actual execution time

of various problems sizes within ��$� as shown in Figure 
���� and on the PCL

cluster within ��$ for the problem sizes we examined� as shown in Graph 
����

This application shows that sometimes the simplest structure is just that of a single

task� and lower level considerations can sometimes be ignored� as their costs are

amortized for problem sizes of interest�



��

0 20 40 60 80 100
Problem Size

1

10

100

1000

10000

Tim
e (

se
c)

Two-part model
One-part model
Actual Execution Times
Means of Actual Execution Times

Figure 
���� Modeled versus actual execution times for LU benchmark on Linux

Cluster� Note this is a log�linear graph�
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Note that this graph is on a log�linear scale�
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��D�� Modeling the SP Benchmark

SP is another Regular SPMD benchmark from the NPB suite� It solves

three sets of un�coupled equations in three dimensions using a scalar penta�diagonal

algorithm� 	rst in the x direction� then in the y� and 	nally in the z direction�

To model SP� we had very little information about the internals of the

code� which was approximately ����� lines of code spread over 
� 	les� We had

no meta�data about possible input parameters� but we did have the information

that the application pro	le �given in Table 
�

� was extremely accurate for a

wide range of problem sizes �And���� Because of our con	dence in the application

pro	le� we used only a benchmark for computation and this percentage to model the

performance of the application� The models we used were are given in Table 
�
��

Computation ��$
Communication �$

Table 
�

� Application Pro	le for SP on the Alpha Farm

SPExTime�i�
Comp Comm

NumElt�i� BM�SP� i� �

�

Comp

N�

P
������ % ����

Table 
�
�� Model for the SP benchmark on the Alpha farm�

This resulted in predictions within ���$� as shown in Figure 
���� This

application demonstrated yet another way to adapt structural models based on

the level of information available�
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Figure 
���� Actual times versus modeled times for SP on Alpha Farm�
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��D�� Modeling the EP Benchmark

The EP �Embarrassingly Parallel� benchmark is also part of the NAS

benchmark suite� This code generates random numbers based on generating Gaus�

sian pairs�

Since this code is embarrassingly parallel� with each processor running

it�s own task in isolation� the execution time is merely the maximum computation

time for each processor�

EPExTime �Max�Computation�i�� �
����

We used the following component models in Tables 
�
� and 
�
��

BMComp�i�
NumElt�i� BM�EP� i�

Alpha Farm �N

P

�
���� % ����

Linux Cluster �N

P

���� % ����

Table 
�
�� Summary of the computation component models for benchmark models

used in de	ning the EP structural model�

OpCtComp�i�
NumElt�i� Op�EP� i� CPU�i�

Alpha Farm �N

P
� real mults ���� % ����

Table 
�
�� Summary of the computation component models for operation count

models used in de	ning the EP structural model�

This resulted in two models that predicted the execution times within �$

of the mean values for the EP on the Alpha Farm� as shown in Figure 
���� and

within 
$ on the Linux cluster� as shown in Figure 
���
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��D�	 Discussion

In this section we presented 	ve applications belonging to the Master�

Slave and Regular SPMD classes� Structural models were constructed for each to

validate the approach and demonstrate the �exibility of each�

The N�body code demonstrated a course of action to take when the appli�

cation pro	le might be in error� in this case� by adding additional communication

component models� The Hi�temp code demonstrated how to model an application

with dynamic load balancing on both homogeneous and heterogeneous platforms�

The LU benchmark demonstrated additional benchmarking techniques possible for

a platform� The SP showed how the pro	le could be used as part of the model�

and the EP showed a simple approach using only computation� All the applica�

tions were modeled to a high degree of accuracy� and the �exibility of adapting

structural models for applications and platforms was illustrated�

��E Related Work

Many researchers have focused on the problem of predicting performance

in various environments� This section surveys related work to our approach�

��E�� Models for Parallel Applications

One common approach to modeling parallel applications is to separate

the performance into application characteristics and system characteristics �TB���

Moh��� KME��� ML���� This approach may also be adequate when the underlying

resources are very similar� For example� Zhang �YZS��� considers only workstations

that do �oating point arithmetic identically� Similarly� the WARP project �SW��a�

SW��b� uses an architectural model based on a task graph weighted by relative

execution times of a generic benchmark� Neither of these approaches allow for the

fact that di�erent applications will have better performance on di�erent machines�
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and that a single relative ranking is not su!cient when dealing with heterogeneous

resources�

In the cluster environment the line between application and resource is

not easily drawn� We do not separate application and system characteristics as

part of the top�level model� or in structural modeling in general� because developers

address their codes as implementations'or combinations of both application and

system� For example� a task will be tuned to 	t an architecture�s speci	c cache

size or to use an architecture�speci	c library routine�

Another closely related approach in parallel computing is Lost Cycles

Analysis �Cro���� Lost cycles analysis involves measurement and modeling of all

sources of overhead in a parallel program� synchronization� load imbalance� com�

munication� insu!cient parallelism� etc� Crovella et� al have built a tool for mea�

suring overheads in parallel programs� then 	t those measurements to analytic

forms� These tools enable programmers to develop accurate performance models

of parallel applications without requiring extensive performance modeling exper�

tise� but may require a great deal of low�level information about the platform of

concern�

��E�� Compositional Approaches

The structural modeling approach is similar in spirit to the use of skele

tons for parallel programming �Col��� DFH��
�� With skeletons� useful patterns

of parallel computation and interactions are packaged together as a construct� and

then parameterized with other pieces of code� Such constructs are skeletons in that

they have structure� but lack detail� much as the top�most structural model shows

the structure of the application with respect to its constituent task implementa�

tions� but the details of the tasks themselves are supplied by individual component

models� Most research on skeletons has concentrated on the use of functional lan�

guages to implement skeletons as opposed to using them to predict application

execution performance�
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Fersha �FJ��� extended the skeleton approach to use petri nets for per�

formance prediction of developing programs from a software engineering or perfor�

mance engineering point of view� However� to use this approach� all tasks� com�

munication packets� and processes �virtual processors� and their ordering must

be de	ned� This approach is a step forward� but by tying it to Petri nets� the

computational overhead may be excessive for larger� complex applications�

A similar approach is called templates� de	ned in �BBC����� Templates

are a description of a general algorithm rather than the executable object code or

the source code more commonly found in a conventional software library� Never�

theless� although templates are general descriptions of key algorithms� they o�er

whatever degree of customization the user may desire� For example� they can be

con	gured for the speci	c data structure of a problem or for the speci	c computing

system on which the problem is to run� The template work focuses on the use of

iterative methods for solving large sparse systems of linear equations� where an it�

erative method is an algorithm that produces a sequence of approximations to the

solution of a linear system of equations� Templates for other classes of applications

have not yet been addressed� They are not currently being used for performance

prediction in a practical setting�

Similarly� Chandy �Cha��� addresses programming archetypes� abstrac�

tions from a class of programs with a common structure� Archetypes include

class�speci	c design strategies and a collection of example program designs and

implementations� optimized for a collection of target machines� This work con�

centrates on deriving program speci	cations for reasoning about correctness and

performance� not developing models for the same�

��E�� Component Models

In some sense� all modeling work grounded in practical methods can be

considered related work to the component model approach� We hope to leverage

existing modeling approaches to build component models� and to make selections
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between them�

One of the problems we have encountered is that many approaches to

modeling assume the availability of pieces of data that we do not have for our

system� Thus� we have grounded this work in models used for current applica�

tions �CS��� DS��� DTMH��� MMFM�
� PRW��� WK�
� YB���� These models

all take into account complexity of computation� information availability� and ac�

curacy needed for predictions in a parallel distributed environment�

POEMS �DDH���� is an end�to�end modeling environment consisting of

compiler driven task�graph generation and multiple modeling and simulation ap�

proaches to verify and extend applications� This is an ambitious project that 	ts

nicely with the structural modeling approach philosophy� When the components

are assembled� the POEM�version of top�level models and component models will

be automatically generated by a variation of the Fortran�D compiler� This data

will be fed to a variety of modeling approaches� both theoretical and analytical�

where di�erent parts of the application and system can be modeled at di�ering

levels of detail using an object approach� At this point� the models can either be

symbolically solved or simulated to make estimates of execution time� The current

focus of the POEMS project is the development of theoretical modeling approaches

and simulation� Task graphs are currently constructed by hand� and models are

selected by hand as well� The POEMS approach will eventually allow di�erent

components of the application� as well as the operating system and the hardware

to be modeled at varying levels of detail�

Examples of instrumentation are seen in the methods presented by the

CLIP and CLASP work �AHWC���� CLIP �Common Lisp Instrumentation Pack�

age� aids the researcher in instrumenting Lisp code to de	ne and run experiments

and collect data about runtime conditions� This data can be analyzed by a number

of statistical packages� but is meant to be used by CLASP �Common Lisp Ana�

lytical Statistics Package� to analyze the data using graphics� statistical tests and

various kinds of data manipulation� CLIP is only compatible with Common Lisp
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codes� thereby limiting it�s usefulness in the scienti	c community� but CLASP can

work with most data 	les� although it was targeted to AI simulations in develop�

ment�

��E�� Related Petri Net Work

PAPS �WH��� is a parallel program prediction toolset based on a set of

Petri net�driven performance prediction tools� Parallel systems are described by

acyclic task graphs representing typical workload of parallel programs� by processor

graphs describing the hardware� and a mapping function� These three speci	ca�

tions are independent and changeable� The performance model generator reads in

these three pieces of information and automatically constructs a Petri net perfor�

mance model for it� This work uses a relative measure of performance to compare

applications on di�erent parallel machines with di�erent mapping functions�

Unfortunately� in parallel distributed computing it would be very time

consuming to evaluate the changing resource sets and data mappings using this

approach� In addition� large programs often cannot be speci	ed to a useful level

of detail� in part because the resulting petri net models would be too large to 	t

into memory �problems of this nature occur graphs of more than ������ nodes� a

size well within reason for even simple benchmarks�� In addition� the speci	cation

can be tedious� and is error prone for large systems�

��E�� Application Pro�le

Various application pro	ling strategies have been addressed in the lit�

erature� A detailed application pro	le is of common use in compiler optimiza�

tions �Wal��� CGS���� For program comprehension and tuning� systems tools such

as gprof �GKM�� and pixie �Sil�� can supply application pro	le tables of data to

help determine the percentage of time spent in a function� how many times a basic

block was run� how often a global variable was accessed� and for some applications
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accesses and how many misses occur at each level of memory�

Many scheduling approaches use what can be thought of as an application

pro	le for the performance prediction portion of their scheduling methodology�

They require information about the frequency and average execution time for each

I�O operation� memory read or write� and �oating point operation throughout

the application� Obtaining this level of information is di!cult and often time�

consuming if even possible� Zhang et al� �YZS��� have developed a tool to measure

the basic timing results needed for their approach� but they avoid the problem

of having the pro	le change with respect to problem size by analyzing a single

problem size over a range of possible workstation networks� Others� like Simon and

Wierum �SW��a�� require complex microbenchmarks to be run on each system�

Ken Sevcik �Sev��� uses a parallelism pro	le to build schedules for space�

shared machines� His pro	le is determined experimentally by running the applica�

tion in the presence of an ample supply of processors� It indicates� as a function of

time� the number of processors in use throughout the execution of the application�

��E�	 Model Selection

Related work to component model selection approach can be found in the

area of algorithm and platform classi	cations� Jamieson �Jam��� examines the re�

lationship between architecture and algorithm characteristics for signal processing

applications� This work attempts to identify the in�uence of speci	c application

characteristics on architecture characteristics� Saavedra�Barrera �SBSM��� de	ned

micro�benchmarks to characterize machine performance� and de	ned a visualiza�

tion technique called a pershape to provide a quantitative way of measuring the

performance similarities of multiple machines� Both of these e�orts provide some

quanti	cation of application�architecture a!nity�

Many modeling approaches assume that considerable� low�level informa�

tion is available� For example� Adve �Adv�
� assumes that all execution times

of sub�task components are known� that they are deterministic in nature� and
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that all communication� contention and other overheads are negligible� Likewise�

�CQ�
� YZS��� assume that operation counts for various procedures or applica�

tion components are available for modeling� These approaches cannot extend to

heterogeneous platforms as operation counts and their meanings will change from

platform to platform� It is well documented �Cro��� that while one machine or suite

of machines will perform best on a given application� another set will perform best

on a di�erent application� We have an additional problem in that often di�erent

implementations are targeted to speci	c architectures� and these may not even be

the same algorithm for a problem� let alone have the same operation count�

��F Summary

In this chapter we have presented a technique to model applications tar�

geted to clusters of workstations called structural modeling� Application exe�

cution behavior is decomposed in accordance with the functional structure of the

application� and individual tasks are modeled with �exible� extensible component

models� Results were presented for several Master�Slave and Regular SPMD ap�

plications on three di�erent single�user platforms to show not only the accuracy

of this approach� but the ease in adaption to new platforms� The next chapter

shows how this work can be extended to predict the behavior of systems shared

by multiple users�

Some of the material in this chapter has been previously published �Sch����

The dissertation author was the primary investigator and single author of this pa�

per�
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Chapter �

Stochastic Values and Predictions

In the last chapter we showed that it was possible to model a diverse set

of applications on a variety of single�user �dedicated� cluster platforms using the

structural modeling approach� One of the main di�erences between a single�user

platform and a multi�user �production� platform is that system and application

characteristics� especially available CPU and bandwidth� may exhibit variable be�

havior during the execution of an application� Program execution can also vary

based on data set characteristics or non�deterministim as well�

This chapter describes how to extend the structural modeling approach

to incorporate information about varying system and application behavior� We

de	ne stochastic values� or values that represent distributional data� to re�ect

�uctuations in behavior� We describe three possible representations for stochastic

values and the associated arithmetic for each� discuss the advantages and disad�

vantages of each approach� and show experiments that support this approach� We

begin this chapter by assuming that accurate structural models are available for

the application on the system in question� Section ��H addresses the case in which

a structural model does not accurately capture the behavior of the application�

���
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��A Motivation

Most performance prediction models use parameters to describe system

and application characteristics such as bandwidth� available CPU� message size�

operation counts� etc� Model parameters are generally assumed to have a single

likely value� which we refer to as a point value� For example� a point value for

bandwidth might be � Mbits�second�

However� in practice� point values are often a best guess� an estimate

under ideal circumstances� or a value that is accurate only for speci	c time and

load conditions� Frequently� it is more useful to represent system and applica�

tion characteristics as a distribution of possible values over a range� for example�

bandwidth might be reported as having a mean of � Mbits�second and a standard

deviation of � Mbit�second� We refer to values that can be represented by distri�

butional data as stochastic values� Whereas a point value gives a single value

for a quantity� a stochastic value gives a set of possible values weighted by prob�

abilities to represent a range of likely behavior �TK�
�� More precisely� we de	ne

a stochastic value X to be the the set of values fx�� � � � � xng with the associated
function F �xi� � pi� where pi is the probability associated with xi� for all values

xi � X� Note that
P

i pi � ��

We call a prediction that can be represented as a distribution of execu�

tion times a stochastic prediction� Such predictions are calculated by using

stochastic values to parameterize structural models� This is shown graphically in

Figure ����

There are two problems that must be addressed to make it feasible to use

stochastic values for performance predictions� The 	rst problem is to determine a

representation for the distributional data� In this chapter we present three ways

to represent stochastic values� using normal distributions� using an interval repre�

sentation� and using histograms� Each of these methodologies has advantages and

disadvantages that will be discussed�
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Figure ���� Stochastic predictions are created by parameterizing structural models

with stochastic values�

In addition� to make use of stochastic information in a structural model�

we need to de	ne all arithmetical and collective operation functions that are used

as composition operations� In de	ning composition operators for structural models

in the last chapter� the need for functionality to allow for additional information

was addressed brie�y� If the parameters to a component models are single �point�

valued execution times� then� for example� the composition operator � will be basic

addition� that is f�x� y� � x � y� However� if the parameters for a component

model are stochastic values� the composition operator for � would need to be

de	ned over stochastic values as well as result in stochastic values� In order to use

stochastic values to parameterize structural models� we must de	ne not only the

representation of a stochastic value and how to derive it from the available data�

but the needed arithmetic as well�

Stochastic values are only one form of additional information that can

be incorporated into structural models� Other forms of data that could be incor�

porated are so�called quality of information ��QoIn�� measures �BW��� BWS����

QoIn measures are quanti	able attributes which characterize the quality of a value�

Such attributes might include the lifetime of the prediction� its accuracy� the over�

head of computing the prediction� etc� In order to generate a quality of information
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metric for the overall prediction� the relevant QoIn measures would need to be com�

bined as part of the function of the composition operators� similar to the arithmetic

de	ned for stochastic values in this chapter�

��A�� Statistics and Notation

Throughout this chapter some basic statistical terms and notation are

used� We review them in this section�

The mean of a set of data is the arithmetical average over all values in

the set� Given a set of n values� x�� � � � � xn� the mean is de	ned to be�

nX
i��

xi

n
�����

The mean of a set of data samples is often notated x but we denote it m to

di�erentiate it from an upper bound �de	ned below��

The primary measure of variability in statistics depends on the extent

to which each sample observation �value� deviates from the mean of the samples�

Subtracting the mean from each value gives us the set of deviations from the

mean m� The n deviations from the mean are the di�erences

x� �m� x� �m� � � � � xn �m ����

The larger the magnitude of the deviations� the greater the amount of variability

in the sample�

Since deviations can be both positive and negative� and their sum is zero�

simply adding them will not give a measure of the variance over a set of data� To

report a summary statistic for the deviation over the data set we use the sample

variance� sd�� equal to the sum of the squared deviations from the mean� divided

by the size of the data set minus one�

sd� �

nX
i��

�xi �m��

n� � ���
�
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Another useful metric is the sample standard deviation de	ned as the

square root of the variance� denoted sd

sd �

vuuuut
nX
i��

�xi �m��

n� � �����

We denote the mean and standard deviation of a data set as the tuple �m� sd��

Two other important values for a set of data are the upper bound and

the lower bound� The upper bound of x�� � � � � xn is the value x � xi for all i�

Likewise� the lower bound of a set is the value x � xi for all i� We denote the

upper bound and lower bound of a data set as the tuple �x� x��

��A�� Outline

This chapter is organized as follows� In Section ��B we address represent�

ing stochastic values as normal distributions� and describe how to combine such

values arithmetically� In Sections ��C and ��D� we detail two alternative represen�

tations of stochastic values� intervals and histograms� We discuss the trade�o�s

associated with using each of these representations� including the expressiveness of

the representation technique� availability of the data to de	ne the representation�

complexity of the arithmetic needed to combine stochastic values of a given repre�

sentation� the error such combinations may introduce� and practicality issues� In

addition� the e!ciency of computing a prediction must be compared to the qual�

ity of the result� a continuation of the accuracy�overhead trade�o� discussed last

chapter�

In Section ��F� we demonstrate how stochastic values can be used to

improve performance predictions using several applications in various multi�user

environments� Related work is presented in ��G� We conclude with a summary

and a list of possible extensions in Section ��H� In the next chapter we show how

to use these predictions in stochastic scheduling policies�
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��B De�ning Stochastic Values using Normal

Distributions

The 	rst representation we considered for stochastic values was a general

distribution� General distributions are di!cult to use because they have no unify�

ing characteristics� It is often appropriate to summarize or approximate a general

distribution by associating it with a member of a known family of distributions

that is similar to the given data�

One common family used to approximate distributions when appropriate

is the family of normal distributions� The family of normal distributions is

symmetric and bell�shaped� and approximates the distribution of many random

variables �as the proportion of outcomes of a large number of independent repe�

titions of an experiment in which the probabilities remain constant from trial to

trial�� Normal distributions are de	ned using two values� a mean� which gives

the �center� of the range of the distribution� and a standard deviation� which

describes the variability in the distribution and gives a range around the mean�

For normal distributions� a range equal to two standard deviations includes ap�

proximately ��$ of the possible values of the data�

Many real phenomena in computer systems generate distributions that

are close� to normal �Adv�
� AV�
� Das���� For example� some benchmarks on

dedicated systems may exhibit execution time values with normal distributions�

Figure �� shows a histogram of runtimes for an SOR benchmark on a single work�

station with no other users present� and the normal distribution based on the data

mean� m� and standard deviation� sd� as de	ned in Section ��A��� Distributions

are represented graphically in two common ways� the probability density func�

tion �pdf�� as shown on the left in Figure ��� which graphs values against their

probabilities� similar to a histogram� and the cumulative distribution function

�cdf�� as shown on the right in Figure ��� which illustrates the probability that a

�See Section ��B�� for a discussion on ways to determine �close��
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point in the range is less than or equal to a particular value�

To calculate predictions using a structural model� parameters must be

combined arithmetically� To do this in the timely manner needed for on�the�

�y scheduling� the arithmetic must be tractable� Normal distributions have well

de	ned arithmetic properties and are closed under linear combinations �LM����

Therefore� summarizing stochastic information using normal distributions enables

the needed arithmetic combinations�

We will assume that when representing stochastic values by distribu�

tions that the distribution is normal� and based on the data mean and standard

deviation� In subsection ��B� we discuss the needed arithmetic to use normal

distributions in structural models� and in Section ��B�� we discuss alternatives to

consider when the assumption of a normal distribution does not hold true�
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Figure ��� Graphs showing the pdf and cdf of SOR benchmark with normal

distribution based on data mean and standard deviation�

��B�� Time Frame

Often� stochastic values for a system characteristic are determined by

examining a time series of previous values for that characteristic� The values in

the time series can be used to make predictions about the future behavior of the

characteristic� There are a variety of possible approaches to generate a prediction
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based on a time series �Wol��� Wol���� The period over which the time series is

taken �T � may in�uence the set of values used to make a prediction�

Determining a good value for T is important� If too many values are

included in T � then current changes in the time series will not be adequately

represented in the 	nal prediction� However� if the time frame is too small then

recently occurring out�lier values may in�uence the 	nal prediction overly much�

As there are many ways to predict the future behavior of a value given a time series�

there are many ways to select the range of values of interest �Wol��� WSH����

In this work� we determined the value of T experimentally� In particular�

in de	ning bandwidth and CPU distributions� we used an auto�correlation tech�

nique for the Aggregate Mean and Aggregate Standard Deviation �de	ned below��

which indicated that a window of T�� minutes gave a high correlation �above ���

using a t�test� �Wol���� That is� for our systems it was very likely that the behav�

ior seen in the previous � minutes would be close to the behavior for the next 	ve

minutes� Note that this T is speci	c to� and was veri	ed for� each experimental

environment� The fact that the same value of T held for all three cases under a

variety of workloads is promising for a general de	nition� This is further supported

by a study run to determine the self�similarity of CPU experiments �WSH��� which

were run at the same time as the experiments presented in this thesis� In addi�

tion� Dinda and O�Hallaron �Din��� DO��� found CPU behavior to be stable for

an epoch of length ������� seconds� further supporting our choice of 
�� seconds�

In addition� users can easily evaluate this value for their own platforms as well�

Unless stated explicitly otherwise� we use T�� minutes in the following�

��B�� Arithmetic Operations over Normal Distributions

In order to extend structural prediction models for use with stochastic

values� we need to provide a way to combine them arithmetically� In this sub�

section we de	ne common arithmetic interaction operators for stochastic values

represented by normal distributions by taking advantage of the fact that normal
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distributions are closed under linear combinations �LM����

For each arithmetic operation� we de	ne a rule for combining stochastic

values based on standard statistical error propagation methods �Bar���� In the

following� we assume that point values are represented by P and all stochastic

values are of the form �mi� sdi� and represent normal distributions� where mi is

the mean and sdi is the standard deviation�

When combining two stochastic values� two cases must be considered�

when the distributions are correlated and when they are uncorrelated� Two distri�

butions are correlated when there is an association between them� that is� they

jointly vary in a similar manner �DP��b�� For example� when network tra!c is

heavy� available bandwidth tends to be low and latency tends to be high� When

network tra!c is light� available bandwidth tends to be high and latency tends to

be low� We say that the distributions of latency and bandwidth are correlated in

this case�

When two stochastic values are uncorrelated they do not jointly vary

in a similar manner� This may be the case when the time between measurements

of a single quantity is large� or when the two stochastic values represent distinct

characteristics� For example� available CPU on two machines not running any

applications in common� For arithmetic on uncorrelated stochastic values� we use

a probability�based square root error computation to sharpen � the intervals where

possible�

Note that correlation and non�independence are not equivalent� Two cor�

related variables are not independent� however two non�independent variables may

be uncorrelated because �the correlation coe!cient � only measures the strength

of the linear relationship between �random variables� X and Y� �Ric���� For our

purposes� we examine only correlation� This may be a source of error in the 	�

nal predictions if two parameters are not independent but are uncorrelated to one

�Sharp �Neu��
 or tight bounds on the resulting intervals of a computation using stochastic
values are especially important for predictions to be used in scheduling where tighter bounds on
a predicted execution time can lead to a more e�cient execution time� A set of bounds �l� u
 are
sharper than another set �l�� u�
 if l� � l and u� � u�
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another�

Table ��� summarizes the arithmetic operations between a stochastic

value and a point value� two stochastic values from correlated distributions� and

two stochastic values from uncorrelated distributions� In the following subsections

we give an example of how each is used in structural models�

Addition Multiplication

Point Value and �mi� sdi� � P � P �mi� sdi� � �Pmi� P sdi�
Stochastic Value ��mi � P �� sdi�

Stochastic
nX
i��

�mi� sdi� � �mi� sdi��mj� sdj� �

Values with

Correlated

�
nX
i��

mi�
nX
i��

jsdij
�

� mimj� �sdimj � sdjmi � sdisdj��

Distributions

Stochastic
nX
i��

�mi� sdi� 	 �mi� sdi��mj� sdj� 	
Values with

Uncorrelated

�
	 nX
i��

mi�

vuut nX
i��

sd�i



A

�
mimj�

�
mimj

r�
sdi
mi

��
�
�
sdj
mj

�� ��

Distributions

Table ���� Arithmetic Combinations of a Stochastic Value with a Point Value and

with other Stochastic Values �Bar����

Addition�Subtraction by a Stochastic Value

The communication component model for the SOR given in Equation 
�
�

provides an example of the addition of two stochastic values� Another example of

a model in which two stochastic values must be added is

Comm � Latency �
MsgSize

Bandwidth
�����
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where both Latency and Bandwidth are stochastic values�

We de	ne the sum of two correlated stochastic values to be the sum of

their means and the sum of their standard deviations�

nX
i��

�mi� sdi� �

�
nX
i��

mi�
nX
i��

sdi

�
�����

When two stochastic values are uncorrelated� their values are indepen�

dent� so we use a probability�based square root error computation�

nX
i��

�mi� sdi� 	
�
	 nX
i��

mi�

vuut nX
i��

sd�i



A �����

Subtraction of two stochastic values would have the same form as addition� only

with a negative value for one of the mi� Since normal distributions are closed

under addition and subtraction� the resulting stochastic value will also have a

normal distribution�

Multiplication�Division by a Stochastic Value

While less common in structural modeling than addition� there are times

when it is necessary to multiply two stochastic values� For example� in Equa�

tion 
��� we multiply AvailCPU�Si� by a value generated by a dedicated bench�

mark� If the application is data dependent or nondeterministic� such as is the case

with the Genetic Algorithm Code �Section �D���� then it is likely that the dedi�

cated benchmark may be represented by a stochastic value� If bothAvailCPU�Si�

and the benchmark are stochastic values� we would need to calculate their product�

As with the addition of two stochastic values� there are two cases for

multiplying stochastic values�� When the distributions are correlated we can use

a formula similar to standard statistical error propagation

�mi� sdi��mj� sdj� � �mimj� �sdimj � sdjmi � sdisdj�� �����

�We treat division of �mi� sdi� by �mj � sdj� as multiplication of �mi� ai� by �m��

j � sd��

j � for

mj �� ��
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In cases where the distributions are uncorrelated� or when sdisdj is very

small compared to the other terms �which should be common for high quality

�low variance� information�� multiplication is much like the rule for addition of

uncorrelated stochastic values� and given by the following formula

�mi� sdi��mj� sdj� 	
�
B	mimj�

�
B	mimj

vuut�sdi
mi

��

�

�
sdj
mj

��


CA


CA �����

In the case where either mi or mj is equal to zero� we de	ne their product to be

zero�

Note that the product of stochastic values with normal distributions does

not itself have a normal distribution� Rather� it is long�tailed� In many circum�

stances� we can approximate the long�tailed distribution with a normal distribution

and ignore the tail as discussed below in Section ��B�
�

Collective Operations over Stochastic Values

Often structural models will combine components using collective opera�

tions such as Max� Min� or other operators� The combination of stochastic values

for operations over a group must often be addressed in a situation�dependent man�

ner�

For example� consider the calculation of the Max operator� Depending

on the penalty for an incorrect prediction� di�erent approaches may be taken�

Max could be calculated by selecting the largest mean of the stochastic value

inputs� or by selecting the stochastic value with the largest magnitude value in its

entire range� For example� to compute the Max of three possible stochastic values

fA � ��� ����� B � �
� �� C � �
� �� g� A has the largest mean� and B has the

largest value within its range� However on average� the values of A are likely to

be higher than the values of B� The usage of the resulting Max value� and the

quality of the result required� will determine how Max should be calculated� This

information would need to be supplied by the model builder� scheduler or user�
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��B�� Using Normal Distributions for Non�normal

Characteristics

In this section� we provide examples of stochastic values for system and

application characteristics which are not normal� but can be represented by normal

distributions in many cases�

Long�tailed Data

Not all system characteristics can be cleanly represented by normal dis�

tributions� Figure ��
 shows the pdf and cdf for bandwidth data between two

workstations over �� Mbit ethernet� This is a typical graph of a long�tailed dis�

tribution� that is� the data has a threshold value� and varies monotonically from

that point� generally with the median value several points below �or above� the

threshold� A similarly shaped distribution� shown in Figure ���� may be found in

data resulting from dedicated runs of the Genetic Algorithm code�

Neither of these distributions are normal� however� it may be useful to

approximate them using normal distributions� Note that context is crucial� That

is� it is not always appropriate to approximate long�tail distributions in this way�

For example� if a prediction were to be used to make an absolute guarantee of

service� we could not approximate long�tailed distributions with a normal distri�

bution because crucial values could be lost� In that case� it might be better to

represent the data using a lower and upper bound or a histogram� as described in

the following sections�

There are important tradeo�s in this work between e!ciency of comput�

ing the prediction and the quality of the resulting prediction� Normal distributions

are a good substitution for long�tailed distributions only when inaccuracy in the

data represented by the normal distribution can be tolerated by the scheduler� per�

formance model� or other mechanism that uses the data� Future work may include

examining other possible distributions and the feasibility of combining them for
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this setting�
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Figure ��
� Graphs showing the pdf and cdf for bandwidth between two worksta�

tions over ��Mbits ethernet with long�tailed distribution and corresponding normal

distribution�

Modal Distributions

For some application or system characteristics� the data is multi�modal�

For example� Figure ��� shows a histogram of available CPU data for an Ultra

Sparc workstation �Thing in the PCL Cluster� running Solaris taken over �

hours using vmstat� The Unix tool vmstat reports the exact CPU activity at

a given time� in terms of the processes in the run queue� the blocked processes�

and the swapped processes� Because it takes a snapshot of the system every n

seconds �where for our trace� n � ��� it reports what you would expect to see on

a round�robin scheduled system at a 	ne grain�

The majority of the data lies in three modes� a mode centered at ����� a

mode centered at ����� and another mode centered at ��

� In the case of available

CPU� the modes are often the result of the scheduling algorithm of the operat�

ing system� For example� most Unix�based operating systems use a round�robin

algorithm to schedule CPU bound processes� When a single process is running�

it receives all of the CPU� When two processes are running� each uses approxi�
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Figure ���� Graph showing histogram of dedicated behavior of GA code for problem

size ��� on a Sparc ���

mately half of the CPU� when there are three� each gets a third� etc� This is the

phenomenon exhibited in Figure ����

Recall that we used a time frame of T�� minutes for these experiments�

as explained in Section ��B��� Examining data on this scale� we can characterize

modal data into one of two classes� data that shows temporal locality� and data

that does not show temporal locality� If the value of the characteristic remains

within a single mode during the time frame of interest� we say that the value

shows temporal locality� An example of this �from the � CPU hour trace�

is shown as a time series in Figure ���� When this occurs� we can approximate

the available CPU as a normal distribution based on the data mean and standard

deviation of the appropriate mode without excessive loss of information�

If the data changes modes frequently or unpredictably� we say that it that

it exhibits temporal non�locality� An example of this� again taken from the �

hour CPU trace� is shown as a time series in Figure ���� In this case� some way of

deriving a prediction must be devised which takes into account the �uctuation of

the data between multiple modes�

One approach is to simply ignore the multi�modality of the data and

represent the stochastic value as a normal distribution based on the mean and
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Figure ���� Available CPU on a production workstation�

standard deviation of the data as a whole� However� in the case of temporal

non�locality� this approximation may no longer accurately capture the relevant

behavior characteristics of the data� Because of the multi�modal behavior� a system

characteristic with a small variance in actuality is now represented by a normal

distribution with a large variance �and a large standard deviation�� For the data

in Figure ���� the mean was ���� and the standard deviation was ����

It was observed that while the standard deviation for the data set as

a whole was quite large� the standard deviation for each mode was very small in

comparison� To try to take into consideration the multi�modal characteristic of the

data� one approach is to calculate an aggregate mean and standard deviation for

the value based on the mean and standard deviation for each mode� Let �mi� sdi�

represent the mean and the standard deviation for the data in mode i� We de	ne

the Aggregate Mean �AM� and the Aggregate Standard Deviation �ASD�

of a multi�modal distribution by�

AM �
X

pi�mi� ������

ASD �
X

pi�sdi� ������
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where pi is the percentage of data in mode i� Since we represent each individ�

ual mode in term of a normal distribution� �AM�ASD� will also have a normal

distribution� For the data in Figure ���� AM � ���� and ASD � ���
��

��B�� Discussion

In this section we made a key assumption that the values in the distri�

bution were �close� to �could be adequately represented by� normal distributions�

In order to de	ne �close� we can consider several methods for determining the

similarity between a given data set and the normal distribution represented by its

data mean and its data standard deviation�

One common measurement of goodness�of�	t is the chi�squared ���� tech�

nique �DP��c�� This is a quantitative measure of the extent to which observed

counts di�er from the expected counts over a given range� called a cell� The value
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for �� is the sum of a goodness�of�	t for all quantities�

�� �
X

all cells

�observed cell count � expected cell count��

expected cell count
�����

for the observed data and the expected data resulting from the normal distribution�

The value of the �� statistic re�ects the magnitude of the discrepancies between

observed and expected cell counts� a larger value indicates larger discrepancies�

Another metric of closeness in the literature is called ��distance between

pdf�s �MLH��� where�

kfn � fdk� �
Z
�

��

jfn�x�� fp�x�jdx ����
�

for function fd for the data and fn for the normal distribution based on the data

mean and standard deviation� This corresponds to a maximal error between the

functions�

For both of these metrics� a user or scheduler would need to determine a

threshold for closeness acceptable for their purposes�
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If we approximate non�normal data using a normal distribution there

may be several e�ects� When the distribution of a stochastic value is represented

by a normal distribution but is not actually normal� arithmetic operations might

exclude values that they should not� By performing arithmetic on the mean and

standard deviation we are able to use optimistic formulas for uncorrelated values

in order to narrow the range that is considered in the 	nal prediction� If the

distributions of stochastic values were actually long�tailed� for example� this might

cut o� values from the tail in an unacceptable way�

Normal distributions are closed under linear combinations �LM���� but

general distributions are not� If we use arithmetic rules de	ned for normal distri�

butions on non�normal data� we have no information about the distribution of the

result� This implies that the intermediate and 	nal results generated when calcu�

lating a prediction may have a distribution of unknown shape and characteristic�

Finally� it may not be possible to ascertain the distribution of a stochastic

value� or the distribution may not be su!ciently �close� to normal� In such cases�

other representations must be used� The next sections we explore alternatives for

representing stochastic values� namely that of using intervals and using histograms�

��C Representing Stochastic Values using

Intervals

This section o�ers an alternative to representing stochastic values as nor�

mal distributions by representing them as intervals� The de	nition of an interval is

given� and the rules for interval arithmetic are explained� followed by a discussion

of the necessary assumptions as well as the advantages and disadvantages of this

approach�
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��C�� De�ning Intervals

The simplest way to represent the variability of a stochastic value is as

an interval of values� A similar approach was used for queuing network models

in �LH���� We de	ne the interval of a stochastic value X to be the tuple

X � �x� x� ������

where

fx � Xjx � x � xg ������

The values x and x are called the endpoints of the interval� The value x is the

minimum value over all x � X and is called the lower bound� and the value

x is the maximum value� called the upper bound� The length of an interval

X � �x� x� is de	ned as jXj � x� x�

The main advantage of using intervals is the simplicity and intuitiveness

of the approach� Determining the maximum and minimum value of the interval for

a stochastic value is always possible� and correlates to the intuition behind de	ning

a lower and upper bound for a value�

��C�� Arithmetic over Intervals

Combining stochastic values represented as intervals involves obeying well

de	ned rules for computing interval arithmetic �Neu���� Formulas are given in

Tables ��� ��
� and ���� The result of arithmetic on intervals in structural models

is an interval which provides an upper bound and lower bound on the prediction�

Addition x � y � �x
�
� y
�
� �x � �y�

Subtraction x � y � �x
�
� �y� �x � y

�
�

Table ��� Addition and Subtraction over interval values� x � �x
�
� �x�� y��y

�
� �y��
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y � � y 
 � y � �
x � � �x

�
y
�
� �x�y� ��xy

�
� �x�y� ��xy

�
� x
�
�y�

x 
 � �x
�
�y� �x�y� �min�x

�
�y� �xy

�
�� max�x

�
y
�
� �x�y�� ��xy

�
� x
�
y
�
�

x � � �x
�
�y� �xy
�
� �x

�
�y� x
�
y
�
� ��x�y� x

�
y
�
�

Table ��
� Multiplication of interval values x � �x
�
��x� and y � �y

�
��y��

y � � y � �

x � � �x
�
��y� �x�y

�
� ��x��y� x

�
�y
�
�

x 
 � �x
�
�y
�
� �x�y
�
� ��x��y� x

�
��y�

x � � �x
�
�y
�
� �x��y� ��x�y

�
� x
�
��y�

Table ���� Division of interval values x � �x
�
��x� and y � �y

�
��y�� Note that interval

division of x
y
is only de	ned if � is not in y�

The correlation of stochastic values is also an issue when using arithmetic

over intervals� Interval arithmetic is de	ned assuming two values may be corre�

lated� This may lead to the overestimation of apparently simple expressions� since

each occurrence of a single variable in an arithmetic expression is treated as a

di�erent variable� For example� if A��a
�
� �a �� then A�A � �a

�
� �a� �a � a

�
�� instead of

������ This is also called the dependence or simultaneity problem �Neu����

In some cases� this problem can be mitigated by rewriting the expression

to avoid multiple occurrences of arguments �LH���� For example� the expression

f�X� Y � � X�Y
X�Y

for interval values X and Y may be rewritten as � � �
��X�Y

if

� �	Y � If the expression is evaluated in the latter form� it results in the exact range
of f�x� y� for x � X and y � Y � Evaluating this expression with the intervals X �

��� ��� Y � ���� results in ���� ���� using the 	rst formula� and ���
� �
� using

the second�

To further reduce the e�ect of the simultaneity problem� Hansen �Han���

has developed a generalized interval arithmetic� but this requires additional as�

sumptions about the nature of the intervals not available in more practical set�
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tings� To obtain arbitrarily sharp results without additional assumptions usually

requires using specialized techniques such as interval splitting �MR��� Ske���� In�

terval splitting is a a procedure that divides the interval into sub�intervals� each of

which more closely approximates a uniform distribution� and results in a histogram�

Other methods to obtain sharp results include recursive di�erentiation �Neu���� the

use of Taylor expansions �Han��� or other optimization techniques� These methods

may greatly increase the computational complexity of calculating an interval�

A simpler extension is possible if it can be assumed that the probabili�

ties associated with the values in an interval are monotonic �increases or decreases

throughout the entire range�� When this assumption holds� a sharp interval eval�

uation can be computed simply by evaluating the function at the endpoints of the

argument interval �LH���� That is� instead of using interval arithmetic to solve

the structural model parameterized by stochastic values Xi � �xi� xi� and resulting

in the prediction P � �p� p�� we solve the model twice� 	rst using the xi values to

evaluate p� then solving the model using the xi values to evaluate p�

��C�� Discussion

The primary disadvantage of using intervals is that a given interval may

need to be a very large to account for outlying values� Figure ��� shows four

possible stochastic values� all with very di�erent distributions� all represented by

the same interval� Also� this 	gure demonstrates that a simple interval doesn�t

describe the �shape� of the distribution of the stochastic value� For example� a

value with two or more modes would be represented by the same interval as a value

with a single mode�

Another disadvantage when using intervals is the fact that interval arith�

metic assumes that the distribution of values over an interval is uniform� How�

ever� when this assumption is invalid� errors can be reduced using interval split�

ting �MR��� Ske���� In general� however� these disadvantages are outweighed by

the simplicity of the approach� as demonstrated in the experiments in Section ��F�
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Figure ���� Four sample stochastic values� each with the same interval representa�

tion�
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��D Representing Stochastic Values using

Histograms

A third way to represent stochastic values is by using histograms� His�

tograms� also called VU�lists �Lue��� or frequency distributions �Bla���� consist of

a set of intervals with associated probabilities� In this section we de	ne histograms

and discuss alternative ways to construct them� In Section ��D� we discuss the

arithmetic functions needed to combine them� as well as some summary techniques

presented by L�uthi �Lue���� In Section ��D�
 we discuss the assumptions needed

for this approach� and it�s advantages and disadvantages�

��D�� De�ning Histograms

A stochastic value X may be speci	ed using a one�dimensional histogram

H�X� as follows�

H�X� � X�� X�� ���Xm

X� � �x�� x�� � p�

X� � �x�� x�� � p�
���

Xm � �xm� xm� � pm

������

where
mX
i��

pi � �� Each Xi entry in the de	nition of H�X� is a pair consisting of

an interval �xi� xi�� and an associated probability� pi� Graphically� this is depicted

in Figure ���� The histogram approach provides more information about a set of

values than a single interval� but less information than a distribution since the

distribution of probabilities over each sub�interval in the histogram is assumed to

be uniform�

One of the primary di!culties in de	ning histograms for stochastic val�

ues is the determination of the appropriate intervals and probabilities for each

histogram� There are a number of guidelines for de	ning histograms in the liter�
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ature� In general� the number of intervals as well as their width depends on the

application and system characteristics being measured� as well as the granularity of

the measurement �LMH���� The following are �rules of thumb� used by researchers

for de	ning histograms� The parameter v represents the quantity of data in the

set of values�

� The number of intervals should be�

� between � to �� using the larger number of intervals for larger quantities

of data �MSW����

� between �� and � for v � �� and between � and �� for v � �� �Bla���

Cra����

� approximately equal to
p
v �Bai���

� equal to � � 
�
log���v� �KRB�
� Stu��

� The width of all intervals should be

� equal �Bla��� Cra��� Bai���



�
�

� computed using �Bla���

width �
maximum value � minimum value

number of intervals
������

� calculated by 
���
v���� for 
 the sample standard deviation �KRB�
�

Sco����

� Points of subdivision of the axis of measurement should be chosen so that it
is impossible for a measurement to fall on a point of division �MSW����

Although �rules of thumb� do not provide a rigorous approach to choosing

the number of intervals in a histogram and are in fact contradictory at times�

the collective experience of these researchers indicates that the �best� number of

intervals to select is data�dependent� application�dependent and system�dependent�

as well as dependent on how the histogram will be used�

In the most closely related work to our research �LH���� histograms are

de	ned initially based on the number of intervals provided by the user� The in�

tervals are then split� using interval splitting �MR��� Ske��� and a user supplied

procedure to produce more subintervals for intervals with high probabilities and

fewer for intervals of the same width but lower probability� This procedure is it�

erated until the changes that result by splitting the intervals no longer a�ects the

resulting prediction� For their purposes� �Computational complexity is reason�

able given that the number of parameters speci	ed as histograms is not too high��

��LMH���

��D�� Arithmetic over Histograms

Given a set of k stochastic valued parameters� D� � � �Dk� represented

by histograms� assume that parameter Di has mi intervals fDi��� � � � � Di�mi
g with



�
�

Di�j � �di�j� di�j� � pi�j� i�e��

Di � fDi��� Di��� � � � � Di�mi
g and

Di�� � �di��� di��� � pi��

Di�� � �di��� di��� � pi��
���

Di�mi
� �di�mi

� di�mi
� � pi�mi

for i � � � � � k

������

Since histograms are just sets of intervals� the interval arithmetic rules

de	ned in the last section can be used to combine them arithmetically� However�

every interval has an associated probability� Hence� when calculating F � D � E

for some arithmetic function � and histogram values D and E� it is necessary

to calculate intermediate results for all possible combinations of intervals for each

histogram� For example� given the histograms pictured in Figure �����

D � D� � ��� 
� � ���

D� � �
� �� � ����

E � E� � �� �� � ���

E� � ��� �� � ���

������

F � D � E � �� � � 
 � �� � ���� � �����
�� � �� 
 � �� � ���� � �����
�
 � � � � �� � ����� � �����
�
 � �� � � �� � ����� � ����

�����

Giving intermediate results �depicted in Figure ������

�
� �� � ����

��� �� � ���

��� �� � ����

��� �
� � ��


�����

Using the method presented below� we can combine these intermediate results into
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a pdf� depicted in ���� with�

�
� �� � ����

��� �� � ���

��� �� � ���

��� �� � ����

��� �� � ����

��� �
� � ��
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Figure ����� Histograms for sample parameters D and E
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Figure ����� Histogram of intermediate results for D � E
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Figure ���� Result of D � E using L�uthi�s pdf construction techniques�

Once the intermediate results have been calculated� they must be aggre�

gated to form the result histogram� as pictured in Figure ���� We review the

analysis given in �Lue��� to de	ne pdf�s over histograms�

L�uthi �Lue��� derives a pdf for sets of intermediate results given the as�

sumption that none of the intermediate results are of width zero� and that each in�

terval has a uniform distribution� The end result is the following equation deriving

pdf�s for the intermediate results �denoting the probability of the ith intermediate

interval by fXi
��

fXi
� �Xi�x�

xi�xi

�

��
��
� if x �	Xi

�
xi�xi

if x � Xi

���
�

where

�A�x� �

��
��
� if x �	A
� if x � A

�����

These intermediate probabilities can be combined to obtain an approx�

imation of the actual probability of the performance measure of interest by a
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weighted summation� The aggregated approximation function is f
�app�
X �

f
�app�
X �

IX
i��

pifXi�x�

�
IX
i��

pi
di � di

� �Xi�x�

�����

The construction of f
�app�
X is shown in Figure ���� L�uthi also presents

equations for constructing cdf�s�

��D�� Discussion

When combining stochastic values represented as histograms� it is as�

sumed that each partial result is uniformly distributed� If this assumption does

not hold� the intervals can be subdivided using interval splitting �MR��� Ske����

creating smaller intervals that are more likely to 	t this assumption� Even if the in�

tervals are relatively small� uniformity may not accurately capture the distribution

of the target data�

In addition� the histogram representation assumes that each stochastic

value is uncorrelated in order to determine the probabilistic percentages associated

with each partial result� If the stochastic values are correlated� weights re�ecting

the correlation must be supplied� a di!cult task in practice�

A serious drawback to using histograms in a practical setting is the lack of

an agreed upon and practical de	nition of the number and width of the intervals to

use� In our setting� predictions must be made at execution time� therefore it must

be computationally e!cient to determine the number and content of intervals� The

number of free parameters in L�uthi�s approach can make the determination of a

useful histogram for the data computationally ine!cient� and in this case� another

approach should be used� Due to the lack of a practical de	nition� the exponential

nature of the arithmetic� and the assumption of non�correlated values� we leave

the practical extension to this approach as future work�
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��E Comparison of Stochastic Representations

The previous sections presented three representations for stochastic val�

ues� distributions� intervals and histograms� Each approach has advantages and

disadvantages� Intervals are the most easily de	ned since the minimum and max�

imum value in a data set for a stochastic value are easy to determine� However�

outliers in the data can a�ect the size of the interval� and no details about the

shape of the data are included in a simple range� Histograms allow the shape of

a stochastic value to be elucidated� and lend themselves to the grouping of values�

but are di!cult to de	ne in a practical setting� Distributions can be de	ned using

well understood metrics for the data� but in order to be tractable arithmetically�

we must assume that the associated data 	ts a well�de	ned and computationally

e!cient family of distributions� such as the family of normal distributions� which

is not always a valid assumption�

In the following sections� we present experimental data and results demon�

strating the use of each type of representation for stochastic values as part of the

calculation of a stochastic prediction�

��F Experimental Veri�cation

To demonstrate the usefulness of stochastic values as performance pre�

dictions� we derive stochastic execution time predictions for several applications

on our distributed platforms� We use a stochastic value to represent the available

CPU� and compare results representing the values as intervals and normal distri�

butions to point value predictions� Workstations for all clusters were shared by

multiple users and exhibited diverse processor speeds� available physical memory�

and CPU load� The network was also shared by other users� The Network Weather

Service supplied us with accurate run�time information about the CPU load on our

machines as well as the variance of those values at �� second intervals�
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��F�� SOR on PCL

In our 	rst set of experiments we examined the SOR code� presented

in Section �E��� on the PCL cluster� Figure ���
 shows the normal distribution

stochastic value predictions versus the actual time� Figure ���� shows the interval

stochastic value predictions versus the actual time� run when the PCL cluster had

CPU loads shown in Figures ���� through ����� Two machines had fairly constant

load while the other two varied signi	cantly� Both approaches do well in this

situation� Using normal distribution representations� we capture � of � runs�

Using interval representations� we capture � of �� However� this statistic can be

misleading since one reason the interval representation capture so many values is

due to the fact that the bounds are rather large� most likely due to outlier values

in the CPU data�
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Figure ���
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represented by normal distributions for the SOR benchmark on the PCL cluster

with CPU loads shown in Figures ���� through �����
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represented by intervals for the SOR benchmark on the PCL cluster with CPU

loads shown in Figures ���� through �����
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A second set of experiments for the SOR code on the PCL cluster are

presented� Figure ���� shows the normal distribution stochastic value predictions

versus the actual time� Figure ��� shows the interval stochastic value predic�

tions versus the actual time� run when the PCL cluster had CPU loads shown in

Figures ��� through ���� This example illustrates th e�ect of a high variance

production system �the execution time varied over 
��$�� For these runs� using

a normal distribution representation captured �
 of � runs� while the interval

representation captured � of the ��
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the SOR benchmark on the PCL cluster

with CPU loads shown in Figures ��� through ����
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��F�� GA on PCL

In this set of experiments we examined the GA code� presented in Sec�

tion �D��� on the PCL cluster� Figure ��� shows the normal distribution stochas�

tic value predictions versus the actual time� Figure ��� shows the interval stochas�

tic value predictions versus the actual time� run when the PCL cluster had CPU

loads shown in Figures ��� through ��
�� The normal distribution representation

captured �� of � runs� while the interval representation captured ��� Note that

in this set of experiments it is especially noticeable the generally tighter bounds

obtained using normal distributions� as compared to the interval representation�
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Figure ���� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the GA benchmark on the PCL cluster

with CPU loads shown in Figures ��� through ��
��
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Figure ���� Comparison of point value prediction and stochastic value prediction

represented by intervals for the GA benchmark on the PCL cluster with CPU loads

shown in Figures ��� through ��
��
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Figure ��
� shows the normal distribution stochastic value predictions

versus the actual time� Figure ��
 shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ��

 through ��
�� The normal distribution representation captured � of �

runs� while the interval representation captured ��� This is an example of when the

normal distribution approach may have larger bounds than the interval approach�
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Figure ��
�� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the GA benchmark on the PCL cluster

with CPU loads shown in Figures ��

 through ��
��
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Figure ��
� Comparison of point value prediction and stochastic value prediction

represented by intervals for the GA benchmark on the PCL cluster with CPU loads

shown in Figures ��

 through ��
��
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Figure ��
� shows the normal distribution stochastic value predictions

versus the actual time� Figure ��
� shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ��
� through ���� The normal distribution representation captured �� of �

runs� while the interval representation captured ��
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Figure ��
�� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the GA benchmark on the PCL cluster

with CPU loads shown in Figures ��
� through ����
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Figure ��
�� Comparison of point value prediction and stochastic value prediction

represented by intervals for the GA benchmark on the PCL cluster with CPU loads

shown in Figures ��
� through ����
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��F�� NBody on PCL

In our 	rst set of experiments we examined the NBody code� presented

in Section �D�
� on the PCL cluster� Figure ���
 shows the normal distribution

stochastic value predictions versus the actual time� Figure ���� shows the interval

stochastic value predictions versus the actual time� run when the PCL cluster

had CPU loads shown in Figures ���� through ����� This is an interesting set of

experiments because it shows how the size of the prediction range changes with

respect to the changing loads on the machines� Using normal distributions� we

capture � of the � values� and using intervals we capture all ��
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Figure ���
� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the Nbody benchmark on the PCL cluster

with CPU loads shown in Figures ���� through �����
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by intervals for the Nbody benchmark on the PCL cluster with CPU

loads shown in Figures ���� through �����
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Figure ���� shows the normal distribution stochastic value predictions

versus the actual time� Figure ���� shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ���� through ����� Using normal distributions� we capture �� of the � values�

and using intervals we capture 
�

This set of experiments shows the unfortunate side�e�ects of using past

behavior to predict future CPU usage� It is clear from 	gures ���� and ���� that

is the predictions were shifted � runs left we could capture ���$ of the execution

times� This is an area for future work�
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the Nbody benchmark on the PCL cluster

with CPU loads shown in Figures ���� through �����
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by intervals for the Nbody benchmark on the PCL cluster with CPU

loads shown in Figures ���� through �����
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Figure ���� shows the normal distribution stochastic value predictions

versus the actual time� Figure ���� shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ���� through ����� Using normal distributions� we capture �� of the � values�

and using intervals we capture �� These graphs show how the di�erent approaches

react di�erently to the changing loads�
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the Nbody benchmark on the PCL cluster

with CPU loads shown in Figures ���� through �����
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by intervals for the Nbody benchmark on the PCL cluster with CPU

loads shown in Figures ���� through �����
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Figure ���� shows the normal distribution stochastic value predictions

versus the actual time� Figure ��� shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ���
 through ����� Using normal distributions� we capture  of the � values�

and using intervals we capture ��
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the Nbody benchmark on the PCL cluster

with CPU loads shown in Figures ���
 through �����
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Figure ���� Comparison of point value prediction and stochastic value prediction

represented by intervals for the Nbody benchmark on the PCL cluster with CPU

loads shown in Figures ���
 through �����



��

910277500.0 910278500.0 910279500.0
Time Stamps

0.0

0.2

0.4

0.6

0.8

1.0

Cu
rre

nt
 C

PU

Figure ���
� CPU values dur�

ing runtime for prediction experi�

ments depicted in Figure ���� and

Figure ��� on Lorax� in the PCL

cluster�

910277500.0 910278500.0 910279500.0
Time Stamps

0.0

0.2

0.4

0.6

0.8

1.0

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for prediction experi�

ments depicted in Figure ���� and

Figure ��� on Picard� in the PCL

cluster�

910277500.0 910278500.0 910279500.0
Time Stamps

0.0

0.2

0.4

0.6

0.8

1.0

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for prediction experi�

ments depicted in Figure ���� and

Figure ��� on Thing�� in the PCL

cluster�

910277500.0 910278500.0 910279500.0
Time Stamps

0.0

0.2

0.4

0.6

0.8

1.0

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for prediction experi�

ments depicted in Figure ���� and

Figure ��� on Thing� in the PCL

cluster�



��


��F�� LU on PCL

In this of experiments we examined the LU code� presented in Sec�

tion �E�� on the PCL cluster� Figure ���� shows the normal distribution stochas�

tic value predictions versus the actual time� Figure ���� shows the interval stochas�

tic value predictions versus the actual time� run when the PCL cluster had CPU

loads shown in Figures ���� through ���� The normal distribution representation

captured �� of � runs� while the interval representation captured �s� but the

normal distributions had signi	cantly tighter ranges�
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the LU benchmark on the PCL cluster

with CPU loads shown in Figures ���� through ����
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by intervals for the LU benchmark on the PCL cluster with CPU loads

shown in Figures ���� through ����
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Figure ���
 shows the normal distribution stochastic value predictions

versus the actual time� Figure ���� shows the interval stochastic value predictions

versus the actual time� run when the PCL cluster had CPU loads shown in Fig�

ures ���� through ����� The normal distribution representation captured �� of �

runs� while the interval representation captured �
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Figure ���
� Comparison of point value prediction and stochastic value prediction

represented by normal distributions for the LU benchmark on the PCL cluster

with CPU loads shown in Figures ���� through �����
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Figure ����� Comparison of point value prediction and stochastic value prediction

represented by intervals for the LU benchmark on the PCL cluster with CPU loads

shown in Figures ���� through �����
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��F�� Summary

In summary� for the majority of the experiments� we achieved predictions

that captures the majority of the execution behavior using either normal distribu�

tion representations or interval representations for the stochastic information� This

was the case even when a point�valued prediction was o� by ���$� We saw that

predictions using normal distributions often resulted in sharper intervals� while

predictions using interval representations captured more data� The right choice of

a representation will be dependent on the use of the prediction�

��G Related Work

There are several related approaches of note� however stochastic values

as de	ned here are not related to Petri net models �MBC��� Mol���� also called

�stochastic models�� in any way except through the application of conventional sta�

tistical techniques� Some researchers are beginning to use probabilistic techniques

to represent data for predictions of application performance in distributed environ�

ments� Brasileiro et al� �BFM��� use probability distribution functions to calculate

wait times on a token ring network� This work borrows heavily from queuing the�

ory in a much more theoretical setting than our production setting� Formulas are

provided to determine the suitability of an application for a given network based

on queuing models� but no practical experiments are shown� In addition� Das�

group at Penn State has been studying the e�ect of assuming normal distributions

in simulations �Das���� In addition� the WARP project �SW��a� SW��b� models

resource contention using queuing models�

The most closely related work to our approach is by Mendes as part of

the Rice Fortran D�� compiler �MR���� They generate symbolic performance pre�

dictions using a data parallel compiler� The compiler translates data parallel code

and generates a symbolic cost model for program execution time� predicting the

scalability of each fragment of the original code� The compiler generates upper
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and lower bounds for predicted execution time by considering extrema of system�

dependent constants �eg� memory references times� �MR���� They extended the

Fortran D�� compiler with appropriate functionality to extract information re�

garding the execution cost� in symbolic form� of all the loops and message passing

activity in the translated program� as a function of the number of processors �P�

and the problem size�N�� To predict the program�s performance one has simply

to evaluate this cost model for speci	c values of P and N� This work� as we do�

assumes some baseline system benchmarks� for example the time to send a message

of size X� the time to receive a message of size X� the time to do an assignment

and the time to do an arithmetic operation� However� some terms in the perfor�

mance model may not be able to be determined at compile time� and values may

change as the problem size scales� In particular� memory or cache accesses may

become a factor� Mendes and colleagues allow the use of an estimated lower and

upper bound for these values and build two models � one for the lower bound and

one for the upper� The range between the two can be very large� and no attempt

is made to minimize it� This work also stresses the need for models to be tied

to the compiled code� not the source code� for analysis� much as we insist that

implementations must be analyzed� not machine and application separately�

Another approach to using uncertainties in models is to build upon fuzzy

logic �Kas���� where a fuzzy number is represented by a set of real numbers and

an associated membership function� Autopilot �RSR��� couples a fuzzy logic rule

base for distributed decision making with wide area performance sensors and policy

control actuators� The rule base embodies common sense rules for resource man�

agement which are more amenable to fuzzy logic rules due to the con�icting goals

involves and poorly understood optimization spaces involved� L�uthi also examined

approaches for using fuzzy logic for network queuing models �LH��� by replacing

single value parameters of open as well as closed queuing models by fuzzy numbers�

and discusses asymptotic results for these models�

Karlin�s work in competitive analysis using partial information also bears
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relevance to our work �KMMO��� IKP���� Competitive analysis is concerned with

comparing the performance of on�line algorithms with that of optimal o��line algo�

rithms� Often work in this area is faced with the concern of only partial information

being available� and decisions being made appropriately in that environment�

Our work is somewhat related to �quality of information� such as timeli�

ness and accuracy is used to parameterize business decisions in the area of Business

Information Systems �Ver�� In addition� other quality of information e�orts in the

area of metacomputing �BWS��� KB��� have begun to address the need for ad�

ditional information in order to make educated decisions about performance in a

cluster environment with dynamic load� Using a stochastic value to represent the

range of values possible from some system or application characteristic is one step

in this direction�

��H Summary

In this chapter� we describe a new approach to application performance

prediction in multi�user �production� environments� We have de	ned stochastic

values to re�ect a likely range of behavior for model parameters� and extended

the de	nition of structural models to allow for stochastic parameters as well as

stochastic performance predictions� We allow alternative representations of the

stochastic values as well� Our experiments demonstrate that in production set�

tings� stochastic values can accurately identify the range of application execution

behavior� providing more comprehensive and more accurate information about ap�

plication execution than point values� The next chapter examines a sophisticated

strategy that can take advantage of this stochastic information�

Some of the material in this chapter has been previously published �SB��a�

SB��b�� The dissertation author was the principal researcher�author on these pa�

pers� and the co�author listed in these publications directed and supervised the

research which forms the basis for this chapter�
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Chapter �

Stochastic Scheduling

In the previous chapters we discussed ways to model and predict the

performance of applications executing on shared clusters of workstations� We

developed compositional structural models� and extended them to use stochastic

system and application information� as well as to provide stochastic execution time

predictions�

In this chapter� we de	ne a scheduling approach that can take advan�

tage of stochastic predictions� In particular� we outline a strategy for de	ning and

choosing among the set of schedules that can occur when using scheduling policies

determined by stochastic information� We use this strategy to develop a stochastic

time balancing scheduling policy for data parallel applications when stochastic in�

formation is represented by normal distributions� We present experimental results

that indicate the promise of this approach� and discuss the generalization of this

approach beyond the domain of our instantiation�

��A Scheduling Overview

In this section� we provide a brief overview of terms that will be useful

in de	ning our scheduling policy� An application scheduler is a process that

allocates tasks to resources� allocates data to task�processor pairs� and orders tasks

��
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in time on a particular resource or set of resources �Ber���� Schedulers implement

a scheduling policy �algorithm� that determines the schedule �assignment of

tasks and data to resources� to be used�

Scheduling policies may use one of a variety of cost functions� or perfor�

mance measures� to rank schedules and determine a �best� schedule� A common

performance measure for application schedulers �and the one that we use� is ap�

plication execution time� The goal of many scheduling policies is to minimize

application execution time� Often� there are secondary performance measures of

interest� For example� it can be highly desirable to reduce the variation of the

execution times�

��A�� Motivation

To illustrate the need for stochastic scheduling we re�examine the example

application from Chapter �� The example system consists of two machines� A and

B� executing an embarrassingly parallel application with 
� units of identical work

to be completed� To schedule this application when the system is dedicated �i�e� no

other users are present� it would be appropriate to use point�valued predictions for

the time per unit in order to compute the work allocation� If Machine A completed

one unit of work in �� seconds� and Machine B completed one unit of work in �

seconds� B should be assigned twice as much work as A� as shown in Table ����

In a multi�user environment� contention for the processors and memories

will cause the unit execution times to vary over time in a machine�dependent fash�

ion� Using� for example� a ��hour average� the machines may perform identically�

taking � seconds per unit of work� If this were the only information available� we

would balance the work evenly between the two machines�

It may be the case� though that one machine has a higher variation in

behavior than the other� as shown in line 
 of Table ���� In the last chapter

we demonstrated the usefulness of stochastic predictions over point�valued predic�

tions� We would like our scheduling policy to take this behavior into account� For
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example� if the application developer required the application to 	nish by a given

time� we may choose to conservatively assign the work by assigning more work to

the machine with a smaller variation in performance �Machine A��

Machine A Machine B Assign A Assign B

Single�user �� sec � sec �� units � units
Multi�user �point� � sec � sec �� units �� units

Multi�user � sec mean � sec mean # #
�stochastic� ��
 sec sd ��� sec sd

Table ���� Execution times for a unit of work in single�user and multi�user modes

on two machines�

If the prediction is a stochastic value represented using a normal distri�

bution� we can engineer the assignment of work to processors to be �conservative�

by assigning work to processors using the mean and two standard deviations as

the time per unit of work estimate� In the example setting� using a time per work

estimate of ��� for Machine A and ���� for Machine B� and solving for

T imeOnA �DataOnA � T imeOnB �DataOnB �����

we would assign �� units of work �rounded up from ������ for Machine A and �


units for Machine B� as shown in Table ��� We call this a ��� conservative

schedule since it corresponds to a ��$ con	dence interval� for the completion time

of a unit of work� Note that this does not necessarily equate to a ��$ con	dence

interval for the completion of an application as a whole �Car����

If there was a small penalty for poor predictions� for example if time was

less constrained� the user might optimistically assign a greater portion of the work

to the machine with the maximum potential performance� Machine B� Likewise�

if the user had reason to believe that the previous distribution of work was too

conservative� it might be desirable to assign more units of work to Machine B� For

�A con�dence interval is an interval of plausible values for a characteristic constructed so that
the value of the characteristic will be captured inside the interval �DP�	a
�
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example� the opposite of a ��$ conservative schedule would be a ��� optimistic

schedule� as show in line  of Table ��� corresponding to a �$ conservative

schedule� or a �$ con	dence interval that the task on a processor will complete in

a given time�

Assign A Assign B Best time Worst time

��$ Conservative Prediction �� units �
 units ���� sec ��� sec
��$ Optimistic Prediction �
 units �� units ���� sec ��� sec

Table ��� Conservative and optimistic scheduling assignments�

Of course� nothing limits the policies to only these two bounds� Other

possible schedules are shown in Figure ���� The di!culty is how to determine the

most performance�e!cient schedule for a given application� platform� workload

and user� That is the problem this chapter addresses�

Mean

5% Conservative

Mean - 2 SD

Mean - 1 SD Mean + 1 SD

Mean + 2 SD

30% Conservative
70% Optimistic

70% Conservative
30% Optimistic

50% Conservative
50% Optimistic95% Optimistic 5% Optimistic

95% Conservative

Schedules resulting from distinct work allocations

Work allocation based on stochastic prediction

Figure ���� Possible work allocation schemes and associated scheduling policies�

��A�� Assumptions and Outline

For the purposes of this chapter� we assume that the target set of resources

is a 	xed set of shared heterogeneous workstations� We will consider the set of data
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parallel applications presented previously in the Master�Slave and Regular SPMD

classes of applications� SOR� GA and N�Body�� Since the applications are data

parallel� we also assume each processor executes the same task on its own data�

Given these assumptions� scheduling simpli	es to the data allocation problem�

How much data should be assigned to each task�processor pair
 and how should

that decision be made�

Data allocation using point value information is a well�studied prob�

lem �HS��� ZLP��� Geh��� BK��� DMP��� HK���� The goal of this chapter is

to de	ne a data allocation policy that can take advantage of stochastic informa�

tion� We de	ne a prototype scheduler that uses stochastic application execution

time predictions to de	ne a more sophisticated time balancing scheduling strategy

than is possible with point�valued information� This scheduler adjusts the amount

of data assigned to a task�processor pair in accordance with the variability of the

system and the user�s performance goals�

This chapter is organized as follows� Section ��B reviews the time balanc�

ing scheduling policy and de	nes a stochastic extension� along with an algorithm

for adjusting the stochastic schedule in accordance with the environment� Schedul�

ing results using this initial approach are presented in Section ��C� Related work

is presented in ��D� and we conclude in section ��E�

��B Stochastic Time Balancing

In this section we describe a strategy for stochastic time balancing� Time

balancing is a common scheduling policy for data parallel applications that at�

tempts to minimize the execution time of a data parallel application by assigning

data so that each processor 	nishes executing at roughly the same time� This is

generally accomplished by solving a set of equations� such as those given in Equa�

�We also assume that accurate �within a user�de�ned threshold� structural models and
stochastic predictions are available to the scheduler and that the stochastic information can
be represented using normal distributions� See Section ��A�� for a further discussion of accuracy�
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tion ��� to determine the data assignments �f Di g in the following equations��

Diui � Ci � Djuj � Cj  i� jP
Di � DTotal

����

where

� ui� Time to compute one unit of data on task�processor pair i�

� Di� Amount of data assigned to task�processor pair i�

� DTotal� Total amount of data for the application�

� Ci� Time to distribute the data�

To solve these equations we assume that all variables are point�valued�

We can assume that Ci is independent of the data assignment� as it is for the

SOR application� If the communication time is a function of the amount of data

assigned to a processor� such as it is for the GA� this value can be added in to the

ui factor� A good example of developing and solving time balancing equations to

solve for a performance e!cient data allocation is shown in work by the AppLeS

Group �BWF�����

��B�� Using Stochastic Information

One way to extend time balancing is to adjust the ui value to alter the

predicted completion time on task�processor pair i� Instead of balancing the time

using the result of the mean of a stochastic prediction �or the result of a point�

valued prediction� of execution time for a task�processor pair� we can use any

�point� value in the range given by a stochastic prediction� This would allow the

�exibility to choose a larger ui� resulting in an assignment of less data to possibly

mitigate the e�ects of variability on the overall application behavior �by assigning

less data to a high variability machine�� One approach to determine which value

to choose for ui is to add a speci	ed number of standard deviations to the mean
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of a stochastic prediction� Since the standard deviation is a value speci	c to the

performance of a given machine� each task�processor pair would have its data

allocation adjusted in a machine�dependent manner� We call the multiplier that

determines the number of standard deviations to add to �or subtract from� the

mean the Tuning Factor� The Tuning Factor can be de	ned in a variety of ways�

and will determine the percentage of �conservatism� of the scheduling policy�

With this in mind� we can de	ne ui as

ui � mi � sdi � TF ���
�

where

mi� The mean of the predicted completion time for task�processor pair i�

sdi� The standard deviation of the predicted completion time for task�processor

pair i�

TF � The Tuning Factor� used to determine the number of standard deviations

to add to �or subtract from� the mean value to determine how conservative

the data allocation should be�

Given the de	nition of ui in Equation ��
� the set of equations to solve over is now�

Di�mi � TF � sdi� � Ci � Dj�mj � TF � sdj� � Cj  i� jP
Di � DTotal

�����

��B�� The Tuning Factor

The Tuning Factor represents the variability of the system as a whole�

de	ned by the amount of variation in the available CPU� the variation in the avail�

able bandwidth between each pair of processors� a measure of nondeterminism of

the application� etc� The Tuning Factor is a key element in de	ning a stochastic

time balancing policy� It provides the �knob� to turn to make the scheduling pol�

icy more or less conservative� The Tuning Factor can be provided by the user or
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calculated by the scheduler� The challenge lies in choosing or calculating a Tun�

ing Factor that promotes a performance�e!cient schedule for a given application�

environment� and user�

Our computational method for determining the Tuning Factor uses a sys�

tem of bene	ts and penalties calculated using stochastic prediction information�

This bene	t and penalty approach to determining the value of the Tuning Factor

draws from the scheduling approach of Sih and Lee �SL��b� where the amount of

work is increased for a processor with desirable characteristics �such as a light load�

fast processor speed� etc��� considered as bene�ts� and decreased when a machine

has undesirable properties �such as poor network connectivity� small memory ca�

pacity� etc��� considered as penalties� The basic idea is to assign more optimistic

scheduling policies to platforms with a smaller variability in performance�

We use three values that can provide information about the variability

of the system as a whole� the number of machines that exhibit �uctuating per�

formance behavior in the platform� the variability of performance exhibited of

each machine� represented as the standard deviation� sd� and a measure of the

available computing capacity of the machines� which we call power below� We

want to bene�t �give a more optimistic schedule to� the platforms that have a

smaller variability associated with them� Speci	cally� we want to bene	t�

Platforms with fewer varying machines	 If only one machine on a platform

has varying behavior� the platform should have a more optimistic schedule

than another platform that has the majority of the machines exhibiting vari�

able behavior�

Low variability machines� especially those with lower powers	 We want to

bene	t a platform more for having a slow machine with a high variability

than having a fast machine with a high variability� The faster machine may

have more data assigned to it� so the high variability is likely to have a greater

impact on the overall application execution time�
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Figure ��� Diagram depicting the relative values of Tuning Factors for di�erent

con	gurations of power and variability�

We identify the partial ordering in Figure �� for this requirement� In

Figure ��
 we de	ne an algorithm to calculate the Tuning Factor for stochastic

values represented as normal distributions and obeys the partial ordering in Fig�

ure ��� Note that many other functions satisfy the relative ranking in Figure ��

and are also viable�

The algorithm given in Figure ��
 requires the de	nition of a number of

parameters that are speci	c to the execution environment�

Power�TPi�� A measure of the communication and computation power of the

machine with respect to the resource requirements of the application� This

can be determined by an application�speci	c benchmark�

HighPower� A value that identi	es machines with �high� power� For our initial

experiments� we calculated an average power for the machines in the plat�

form� and any machine with a greater value for power than the average was

considered a High Power machine�

Variability�TPi�� A measure of the variability of performance delivered by a

machine� For our experiments we set Variability�TPi� equal to the standard

deviation of the available CPU measurements for processor i�
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For each task/processor pair, TP_i
if Power (TP_i) > HighPower

Value_i = MaxTuningFactor
else

Value_i = MidTuningFactor
else

else
Value_i = MinTuningFactor

Value_i = MidTuningFactor

TuningFactor = Value_iΣ
number of machines

if Varibility(TP_i) > HighVariability

if Varibility(TP_i) > HighVariability

Figure ��
� Algorithm to Compute Tuning Factor�

HighVariability� A value that identi	es when a machine has a high variabil�

ity� There are many ways to chose this parameter� For our experiments� we

de	ned a HighVariability to be a standard deviation for the available CPU

measurements greater than one�quarter of the width of the average mode

from previous experimental data� In particular� for our experiments� High�

Variability � ���� for the available CPU� since this was roughly equivalent

to having modes that were ��
 wide� This metric should be adjusted to the

environment and can be de	ned by the user�

Tuning Factor Range� The Tuning Factor Range de	nes the range of values

for the Tuning Factor� For the algorithm de	ned in Figure ��
� three values

within the Tuning Factor Range must be de	ned� MinTuningFactor� Mid

TuningFactor� andMaxTuningFactor� These values can be used to determine

the percentage of conservatism for the schedule that impacts the data allo�

cation�

In this initial work� we focused on stochastic values represented using normal
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distributions and consequently focused in particular on predictions at the

mean� the mean plus one standard deviation� and the mean plus two standard

deviations� Therefore� we set MinTuningFactor � �� MidTuningFactor � ��

and MaxTuningFactor � �

Note that using the algorithm given in Figure ��
� schedules range only

from a ��$ to a ��$ conservative schedule as illustrated in Figure ���� This is

because on a single�user �dedicated� platform� we expect mean values to achieve

the best performance� Adding variability to the system �by adding other users�

typically impacts performance in a negative way� leading to a more conservative

schedule to mitigate the e�ect of the variability� However� one feature of the

stochastic scheduling approach is that the scheduling policy can be adjusted to

re�ect the socio�political factors �promoting a more or less conservative schedule�

that may constrict the application of a scheduling policy in a production environ�

ment �LG����

Several other factors need to be considered when de	ning a Tuning Factor

or evaluating the system variability� The time frame over which the variability

information is gathered must be de	ned a priori� and can impact the data greatly�

For our experiments� we used a time frame� T� for the stochastic predictions as

de	ned in Section ��B��� See this section for a further discussion of time�

Note that the algorithm presented in Figure ��
 is used to compute the

Tuning Factor� this parameter then has the property that a value close to the

threshold and far from threshold are treated as equivalent� It is possible to analyze

the partial ordering in such a way that the values are continuous given additional

information� thus negating the need for the discrete Tuning Factor Range values

and this unfortunate side e�ect� This is a topic for future work�

Our 	rst attempt at de	ning a Tuning Factor does not include information

pertaining to network performance� Future work includes adding this factor and

analyzing the needed partial ordering as well� Other factors such as memory size�

available disk space� etc� could also be considered�



���

Note that the approach discussed here is one of many possible ways to

de	ne the Tuning Factor� the heart of our scheduling heuristic� Other choices

are possible� and we plan to explore additional approaches that may better suit

other particular environments and applications� Finally� similar extensions could

be evaluated for other scheduling policies than time balancing as well�

��C Stochastic Scheduling Experiments

In this section we compare a time balancing scheduling policy parame�

terized by a mean�valued ui �i�e� when the Tuning Factor is always �� with two

time balancing policies where ui is determined by a non�zero Tuning Factor� We

evaluate two scheduling policies that use non�zero Tuning Factors� The 	rst 	xes

the Tuning Factor to a ��$ conservative schedule �where two standard deviations

are added to the mean for the ui value for every run�� called ��TF� The second

determines a Tuning Factor at run�time based on environmental data calculated

using the system of bene	ts and penalties described previously by the algorithm

given in Figure ��
� and is called the Variable Tuning Factor� orVTF� We compare

both policies that use stochastic prediction information to a scheduling policy that

uses only a point�valued prediction� called Mean� Our goal is to experimentally

determine in which situations it was advantageous to use nonzero Tuning Factors�

All of the scheduling policies in our experiments use structural perfor�

mance prediction models parameterized by run�time information provided by the

Network Weather Service� In the experiments� we ran applications using the data

distribution determined by each policy at runtime and compared their execution

times� In order to compare the policies fairly we alternate scheduling policies for a

single problem size of the application� so any two adjacent runs could experience

similar workloads and variation in environment� �Each run was short� between 
�

and �� seconds��

The experiments were run on the PCL cluster� consisting of � heteroge�
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neous Sparc workstations connected by a mixture of slow and fast ethernet� and the

Linux Cluster� consisting of � PC�s running Linux connected by fast ethernet� Both

platforms were shared among other users at the time of the experiments� We show

CPU traces to illustrate the load conditions during the scheduling experiments�

Three applications were used in the experiments� the Regular SPMD

SOR code �described in Section �E���� and two data parallel Master�Slave appli�

cations� a Genetic Algorithm �GA� described in Section �D��� and an N�Body

Code� described in Section �D�
�

��C�� Performance Metrics

We consider a scheduling policy to be �better� than others if it exhibits

the lowest execution time on a given run� Note that for our experiments� the �best�

scheduling policy varies over time and with di�erent load conditions� To compare

these policies� we de	ne two summary statistics� The 	rst� called Window� is

the proportion of runs by a scheduling policy that has the minimal execution time

compared to the policy run before it and the policy run after it� or a window

of three runs� For example� given the 	rst few run times for the experiment in

Figure ���� shown in Table ��
� in the 	rst set of three �Mean at �
� VTF at

��� and ��TF at ���� the minimal time is achieved using the VTF policy� For

the next set of three �VTF at ���� ��TF at ��� and Mean at ��� VTF again

achieved the minimal execution time� etc�

Using this metric for the runs shown in Figure ���� the lowest execution

time was achieved by the Mean � times of �� windows� for VTF � times of ��

windows and for ��TF  times of �� windows� indicating that the VTF policy

was almost three times as likely to achieve a minimal execution time than Mean�

The second summary statistic� which we call Compare� evaluates how

often each run achieves a minimal execution time� There are three possibilities�

it can have a better execution time than both the run before and the run after� it

can have a worse execution time than both� or it can be mixed " better than one�
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Time stamp Execution Time Policy

�
 
���
���� Mean
��� 
���
�� VTF
��� 
���

��� ��TF
�� 

������� Mean
��� 

���
�� VTF
��� 
������� ��TF

�
 
������ Mean

��� 

��
��� VTF

�� 

���

� ��TF

� 
��
�� Mean

Table ��
� First �� execution times for experiments pictured in Figure ����

and worse than the other� Referring to the execution times given in Table ��
� for

VTF at ���� it achieves a better execution time than both the Mean run before

it or the ��TF run after it� the ��TF run at ��� does worse than either the VTF

run before it or the Mean run after it� the Mean run at �� is mixed� it does

better than the ��TF run before it� but worse than the VTF run after it� These

results are given in Table ��� and indicate that VTF is three times as likely to

have a faster execution time than the runs before or after it than the mean� and

one�fourth as likely to be worse than both than the Mean�

Policy Better Mixed Worse

Mean 
 � �
VTF �� � 

��TF � � �

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure ����

The third metric we use is a mean and standard deviation for the set of

runtimes as a whole� for each policy� For the data given in Figure ���� the Mean

policy runs had a mean of 
��� and a standard deviation of 
����� the VTF policy



���

runs had a mean 
���� and a standard deviation of 
�
�� and for the ��TF policy

runs had a mean 
���� and a standard deviation of ���� This indicates that over

the entire run� the VTF policy exhibited a ���$ improvement in overall execution

time� and less variation in execution time than the Mean policy as well�

��C�� SOR on Linux Cluster

In our 	rst set of experiments we examined the SOR code� presented in

Section �E��� on the Linux cluster� Figure ��� shows a comparison of the three

scheduling policies when the Linux cluster had CPU loads shown in Figures ���

through ���� In this set of experiments� the load on two machines is fairly constant�

while the load on a third has a small variation� and the available CPU on a fourth

has a very large variation� Of note especially is the dramatic drop in run times at

time stamp ���������� likely due to the cessation of a job on Soleil� The metrics

for this graph are given in Section ��C�� and indicate a signi	cant improvement

when using stochastic information�



���

910002000.0 910004000.0 910006000.0
Timestamps

20

25

30

35

40

Ex
ecu

toin
 Ti

me
 (s

ec)

Mean Scheduling Policy
VTF Scheduling Policy
95TF Scheduling Policy

Figure ���� Comparison of Mean� VTF� and ��TF policies� for the SOR bench�

mark on the Linux cluster with CPU loads shown in Figures ��� through ����
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SOR on Linux� Constant Available CPU

For this set of experiments� there was a fairly constant load over the

four Linux machines� as shown in Figures ���� through ���
� Figure ��� shows a

comparison of the three scheduling policies� Using the Window metric� the lowest

execution time was achieved by the Mean � times of �� windows� � times for

VTF and �� times for ��TF� The Mean policy runs had a mean of 
��� and a

standard deviation of 
��
� the VTF policy runs had a mean 
��� and a standard

deviation of ��� and for the ��TF policy runs had a mean 
��
 and a standard

deviation of ����� The results of the Compare metric are given in Table ����

Policy Better Mixed Worse

Mean � � �
VTF � � �
��TF 
 � ��

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure ����

For this set of experiments� the augmented scheduling policies did not

overly bene	t the performance� We feel this is because of the low variation seen

on the system� However� it should be noted that even if the overall execution time

did not improve signi	cantly� the variation of the execution time was reduced by

half�
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Figure ���� Comparison of Mean� VTF� and ��TF policies� for the SOR bench�

mark on the Linux cluster with CPU loads shown in Figures ���� through ���
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SOR on Linux� High Variation in Available CPU

Figure ���� shows a comparison of the three scheduling policies when

the Linux cluster had CPU loads shown in Figures ���� through ����� Using the

Window metric� the lowest execution time was achieved by the Mean �� times of

�� windows� �� times for VTF and � times for ��TF� The Mean policy runs had

a mean of 
��� and a standard deviation of ����� the VTF policy runs had a mean


��� and a standard deviation of 
��� and for the ��TF policy runs had a mean


���� and a standard deviation of 
��
� The results of the Compare metric are

given in Table ����

Policy Better Mixed Worse

Mean � � �
VTF 
 �� �
��TF � � �

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

The summary statistics indicate that over the entire run� although there

wasn�t a great deal of execution time improvement� there was less variation in the

performance with the stochastic scheduling policies� Moreover� both the Compare

and Window metrics indicate that for similar load conditions� ��TF was almost

twice as likely to achieve a minimal execution time than the Mean scheduling

policy�
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Figure ����� Comparison ofMean� VTF� and ��TF policies� for the SOR bench�

mark on the Linux cluster with CPU loads shown in Figures ���� through �����
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��C�� SOR on PCL Cluster

We ran similar experiments for the SOR code on the PCL cluster� Again�

we alternated scheduling policies to compare them fairly� As with the Linux cluster

we ran these experiments under a variety of load conditions�

Figure ���� shows a comparison of the three scheduling policies when

the PCL cluster had CPU loads shown in Figures ��� through ��
� Two of the

machines had a very low variability� while two had a high variability in available

CPU� Using the Window metric� the lowest execution time was achieved by the

Mean � times of �� windows� 
� times for VTF and �� times for ��TF� The

Mean policy runs had a mean of ���� and a standard deviation of ��� the VTF

policy runs had a mean ��� and a standard deviation of ���� and for the ��TF

policy runs had a mean ���� and a standard deviation of ���� The results of the

Compare metric are given in Table ����

Policy Better Mixed Worse

Mean 
 � �
VTF ��  

��TF 
 � �

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

These summary statistics indicate that over the entire run� there was a

��$ improvement when using VTF as compared to the Mean scheduling policy�

Moreover� VTF was almost � times as likely to achieve a minimal execution time

than Mean in a run�by�run comparison�
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mark on the Linux cluster with CPU loads shown in Figures ��� through ��
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SOR on PCL� High Variability in Available CPU

Figure ��� shows a comparison of the three scheduling policies when the

PCL cluster had CPU loads shown in Figures ��� through ���� in which three

machines had a high variability� Using the Window metric� the lowest execution

time was achieved by the Mean � times of �� windows� �� times for VTF and

�� times for ��TF� The Mean policy runs had a mean of 
�
� and a standard

deviation of ��
�� the VTF policy runs had a mean ��� and a standard deviation

of ���� and for the ��TF policy runs had a mean �
� and a standard deviation

of ���� The results of the Compare metric are given in Table ����

Policy Better Mixed Worse

Mean � � �
VTF � � �
��TF � � �

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure ����

These results are inconclusive� The execution times for the stochastic

scheduling policies show some improvement over the point�valued Mean policy�

and a much smaller standard deviation in execution time� but the Window and

Compare metrics indicate than on a run�by�run level� the improvement was negli�

gible�
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��C�� GA on Linux Cluster

The third group of experiments use the Genetic Algorithm code on the

Linux cluster� The GA has the added complication of nondeterministic behavior�

making comparisons even more di!cult since not only the loads are changing but

the actual work being done by the application changes as well� This is shown by

Figure ��� which shows the run times for the GA on the dedicated Linux cluster

when the data was distributed evenly among the four processors� consistently from

run to run� For these runs� the mean was �
���� with a standard deviation of �����
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Figure ���� Run times for GA application with even data decomposition on Linux

cluster�
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Figure ��
� shows a comparison of the three scheduling policies when the

Linux cluster had CPU loads shown in Figures ��
� through ��
�� showing high�

but consistent variability for two of the machines� Using the Window metric� the

lowest execution time was achieved by the Mean �� times of �� windows� � times

for VTF and �� times for ��TF� The Mean policy runs had a mean of ���
� and a

standard deviation of �� the VTF policy runs had a mean ����� and a standard

deviation of ��� and for the ��TF policy runs had a mean ���� and a standard

deviation of ���� The results of the Compare metric are given in Table ����

Policy Better Mixed Worse

Mean � 
 �
VTF � � �
��TF � 
 ��

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure ��
��

The statistics indicate only a slight reduction in execution time� and less

variance in execution time as well� but VTF performed better than the Mean

scheduling policy on a run�by�run basis�
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Figure ��
�� Comparison ofMean� VTF� and ��TF policies� for the GA code on

the Linux cluster with CPU loads shown in Figures ��
� through ��
��
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GA on Linux� High Variability in Available CPU

Figure ��
� shows a comparison of the three scheduling policies when

the Linux cluster had CPU loads shown in Figures ��
� through ��
�� in which

two machines showed a very high variability in available CPU� Using the Window

metric� the lowest execution time was achieved by the Mean �� times of �� windows�

� times for VTF and � times for ��TF� The Mean policy runs had a mean of

����� and a standard deviation of ���� the VTF policy runs had a mean �����

and a standard deviation of ��� and for the ��TF policy runs had a mean ����


and a standard deviation of ����� The results of the Compare metric are given in

Table �����

Policy Better Mixed Worse

Mean � � �
VTF � � �
��TF � � �

Table ����� Summary statistics using Compare evaluation for experiment pictured

in Figure ��
��

Again� there was a slight improvement in overall runtimes �$�� but the

standard deviation was reduced by almost ��$ when comparing Mean and ��TF�

On a run�by�run basis� the stochastic policies were almost twice as likely to have

a faster execution time�
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Figure ��
�� Comparison ofMean� VTF� and ��TF policies� for the GA code on

the Linux cluster with CPU loads shown in Figures ��
� through ��
��
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��C�� GA on PCL

Our fourth set of experiments were run for the GA code on the PCL

cluster� Figure ���� shows a comparison of the three scheduling policies when

the PCL cluster had CPU loads shown in Figures ���� through ����� in which

two machines showed a very high variability in available CPU� Using the Window

metric� the lowest execution time was achieved by the Mean �� times of �� windows�


 times for VTF and � times for ��TF� The Mean policy runs had a mean of

����
 and a standard deviation of �
���� the VTF policy runs had a mean �����

and a standard deviation of ����� and for the ��TF policy runs had a mean ���
�

and a standard deviation of ����� The results of the Compare metric are given in

Table �����

Policy Better Mixed Worse

Mean � � �
VTF � � �
��TF � � �

Table ����� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

Of note with this set of experiments is the spike seen at time ����������

and the fact that both stochastic scheduling policies compensate for the variation

signi	cantly better than the Mean scheduling policy� In addition� over the entire

set of runs� the VTF policy showed almost a �$ improvement over the Mean policy�

and had a much smaller variation as well� The Compare metric also indicates that

VTF was almost twice as likely to have the best execution time than Mean�
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Figure ����� Comparison ofMean� VTF� and ��TF policies� for the GA code on

the PCL cluster with CPU loads shown in Figures ���� through �����
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GA on PCL� High Variability in Available CPU

Figure ���� shows a comparison of the three scheduling policies when the

PCL cluster had CPU loads shown in Figures ���� through ���� showing a large

variation in available CPU on all four machines� Using the Window metric� the

lowest execution time was achieved by the Mean �� times of �� windows� 

 times

for VTF and �� times for ��TF� The Mean policy runs had a mean of ����� and a

standard deviation of ����� the VTF policy runs had a mean ���� and a standard

deviation of ���� and for the ��TF policy runs had a mean ����� and a standard

deviation of 
�
� The results of the Compare metric are given in Table ����

Policy Better Mixed Worse

Mean  �� �
VTF �� � 
��TF � �� �

Table ���� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

It is unclear why ��TF performed so poorly� however VTF showed a �$

improvement over the mean execution times of the Mean policy� Likewise� VTF

was almost � times more likely to have a faster execution time than Mean in a

run�by�run comparison�
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Figure ����� Comparison ofMean� VTF� and ��TF policies� for the GA code on

the PCL cluster with CPU loads shown in Figures ���� through �����
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GA on PCL� Low Variation in Available CPU

Figure ���� shows a comparison of the three scheduling policies when

the PCL cluster had CPU loads shown in Figures ���� through ����� Using the

Window metric� the lowest execution time was achieved by the Mean � times of

�� windows� �� times for VTF and �� times for ��TF� The Mean policy runs had a

mean of ���
� and a standard deviation of ���� the VTF policy runs had a mean

���� and a standard deviation of ����� and for the ��TF policy runs had a mean

�
�� and a standard deviation of ���� The results of the Compare metric are

given in Table ���
�

Policy Better Mixed Worse

Mean �� � �
VTF � � �
��TF � � �

Table ���
� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

Of note with this set of experiments is that ��TF appears to be overly

conservative when Thing has idle cycles� although VTF appears to adjust more

e!ciently as one would expect�
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Figure ����� Comparison ofMean� VTF� and ��TF policies� for the GA code on

the PCL cluster with CPU loads shown in Figures ���� through �����
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��C�	 N�body Code on Linux Cluster

We also ran experiments using the N�Body solver� described in Sec�

tion �D�
� Unlike the GA� this code was deterministic� but communication played

a larger role in predicting the execution time�

Figure ���� shows a comparison of the three scheduling policies when the

Linux cluster had CPU loads shown in Figures ���� through ���� which show a

fairly consistent variation in available CPU� Using the Window metric� the lowest

execution time was achieved by the Mean �� times of �� windows� 
 times for

VTF and � times for ��TF� The Mean policy runs had a mean of ����
 and a

standard deviation of ����� the VTF policy runs had a mean ����� and a standard

deviation of ��� and for the ��TF policy runs had a mean ����
 and a standard

deviation of ����� The results of the Compare metric are given in Table �����

Policy Better Mixed Worse

Mean � � �
VTF � � �
��TF � � �

Table ����� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

These statistics show a slight improvement in overall execution time ���

�$� when comparing the stochastic policies to the Mean policy� and a reduced

variation as well� Moreover� on a run�by�run basis� as shown by the Window and

Compare metrics� the stochastic scheduling policies were more likely to achieve a

better execution time�
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Figure ����� Comparison of Mean� VTF� and ��TF policies� for the NBody

benchmark on the Linux cluster with CPU loads shown in Figures ����

through �����



�

910566000.0
Timestamps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for scheduling exper�

iments depicted in Figure ���� on

Mystere� in the Linux cluster�

910566000.0
Timestamps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for scheduling exper�

iments depicted in Figure ���� on

Quidam� in the Linux cluster�

910566000.0
Timestamps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for scheduling exper�

iments depicted in Figure ���� on

Saltimbanco� in the Linux cluster�

910566000.0
Timestamps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Cu
rre

nt
 C

PU

Figure ����� CPU values dur�

ing runtime for scheduling exper�

iments depicted in Figure ���� on

Soleil� in the Linux cluster�



�

NBody on Linux� Low Variability in Available CPU

Figure ���� shows a comparison of the three scheduling policies when the

Linux cluster had CPU loads shown in Figures ���� through ����� showing a very

small variation in available CPU� Using the Window metric� the lowest execution

time was achieved by the Mean � times of �� windows� 
� times for VTF and

�� times for ��TF� The Mean policy runs had a mean of �
��� and a standard

deviation of ����� the VTF policy runs had a mean ���� and a standard deviation

of ���� and for the ��TF policy runs had a mean ����� and a standard deviation

of ����� The results of the Compare metric are given in Table �����

Policy Better Mixed Worse

Mean � � �
VTF �
 � �
��TF � � �

Table ����� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

Using these statistics� we see only a slight improvement in overall exe�

cution times when comparing the Mean policy to the two stochastic policies� and

not even that when comparing the Mean and ��TF� However� the Compare and

Window metrics indicate that on a run�by�run basis� there is a signi	cant improve�

ment� with VTF having a minimal execution time nearly three times as often as

Mean�
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Figure ����� Comparison of Mean� VTF� and ��TF policies� for the NBody

benchmark on the Linux cluster with CPU loads shown in Figures ����

through �����
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NBody on Linux� Higher Variation in Available CPU

Figure ���� shows a comparison of the three scheduling policies when

the Linux cluster had CPU loads shown in Figures ���� through ����� Using the

Window metric� the lowest execution time was achieved by the Mean � times of ��

windows� � times for VTF and 
 times for ��TF� The Mean policy runs had a

mean of ���� and a standard deviation of ����
� the VTF policy runs had a mean

����
 and a standard deviation of ����� and for the ��TF policy runs had a mean

����� and a standard deviation of ������ The results of the Compare metric are

given in Table �����

Policy Better Mixed Worse

Mean 
 � �
VTF � � �
��TF � � �

Table ����� Summary statistics using Compare evaluation for experiment pictured

in Figure �����

Using these statistics� we see that there is a �$ improvement when using

VTF over the Mean policy� although for these runs there is not an improvement

in the standard deviation of the execution times� Of note is the large change in

performance seen at time stamp ��������� when the load on three of the machines

increased signi	cantly�
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Figure ����� Comparison of Mean� VTF� and ��TF policies� for the NBody

benchmark on the Linux cluster with CPU loads shown in Figures ����

through �����
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��C�
 Summary

The previous subsections presented graphs comparing three scheduling

policies for several applications on two shared clusters of workstations� In general�

we found that the policies with non�zero Tuning Factors �VTF and ��TF� led

to reduced execution times when there was a high variation in available CPU�

In addition� in almost all cases the standard deviation �or variation associated

with the actual execution times� was greatly reduced when using non�zero Tuning

factors� leading to more predictable execution time behavior�

��D Related Work

��D�� Scheduling

The most closely related work� and the primary work this project grew

out of� is AppLes " Application Level Scheduler �BW��� BW��� BWF����� The

AppLes approach recognizes that applications require special�purpose tuned sched�

ules to achieve the best possible performance� A scheduling agent� tightly�coupled

to the application� is built to maximize the performance of the application using

dynamic information and adaptive scheduling techniques�

Prophet �WZ��� uses run�time granularity information to select the best

number of processors to apply to the application� and is also aware of the overhead

possibly added by a scheduler� Prophet supports the use of highly�shared networks

by utilizing dynamic system information about the level of CPU and network usage

at runtime supplied by the Network resource Monitoring System �NRMS�� much as

our scheduling and prediction approach made use of the Network Weather Service�

��D�� Data Allocation

Our approach to data allocation was based on a scheduling approach orig�

inally presented by Sih and Lee �SL��b� SL��a� SL�
�� This work concentrated on



�

a compile�time scheduling approach for interconnection�constrained architectures�

and used a system of bene	ts and penalties �although not identi	ed as such� for

task mapping and data allocation� As a compile�time approach� it did not use

current system information� and targeted a di�erent set of architectures than our

work as well�

Zaki et al� �ZLP��� also focused on the data allocation aspect of schedul�

ing� This work compared load balancing techniques showing that di�erent schemes

were best for di�erent applications under varying program and system parameters�

However� the load model used in this work did not accurately portray the available

CPU seen on our systems�

��D�� Other Related Approaches

Waldspurger and Weihl have examined the use of a randomized resource

allocation mechanism called lottery scheduling �WW���� Lottery Scheduling is an

operating system level scheduler that provides �exible and responsive control over

the relative execution rates of a wide range of applications� It is related to our ap�

proach in that they manage highly shared resources using time series information�

however this approach is not directly applicable to a higher level scheduler such

as ours� In addition� this work allows modular resource management� an approach

that may extend into our scheduling in the future�

Remulac �BG��� investigates the design� speci	cation� implementation

and evaluation of a software platform for network�aware applications� Such appli�

cations must be able to obtain information about the current status of the network

resources� provided by Remos �REsource MOnitoring System� �LMS����� Remos

and Remulac address issues in 	nding a compromise between accuracy �the in�

formation provided is best�e�ort� but includes statistical information if available�

and e!ciency �providing a query�based interface� so applications incur overhead

only when they acquire information� much as we were concerned with the tradeo�s

between accuracy and e!ciency in stochastic information and scheduling choices�
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��E Summary

In this chapter we have examined one use of stochastic prediction infor�

mation� namely building stochastic scheduling policies� We extended the standard

time balancing data allocation policy to use stochastic information to determine

the data allocation when we have stochastic information represented as normal

distributions� This extension hinged on the de	nition of a Tuning Factor for the

system which represented the variability of the system as a whole and was used as

the �knob� that determines the percentage of conservatism needed for the schedul�

ing policy� Our experimental results demonstrate that it is often possible to obtain

faster execution times and more predictable application behavior using stochastic

information in schedules�
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Chapter �

Conclusion

The goal of this dissertation has been to present a technique for mod�

eling distributed parallel applications and a scheduling approach that can uti�

lize enhanced modeling information to determine performance�e!cient application

schedules� We presented structural modeling� an adaptable� �exible approach to

compositional modeling� and extended this technique to allow stochastic parame�

ters� We then used structural models with stochastic predictions to tune a time

balancing scheduling policy for data parallel applications� Our results showed that

stochastic scheduling policies often resulted in faster execution times and more

predictable application behavior�

	�A Critique and Extensions

As in any thesis� this work circumscribed a problem space that can be

extended in many directions� A few of these areas include�

Extending the applicability of structural models� The structural model�

ing approach presented in Chapter 
 adequately predicted the behavior of two

classes of applications applications when the performance of the application con�

sisted of communication and computation� but did not account for other execution

behaviors� Two execution behaviors we plan to add to the structural modeling


�






approach are I�O behavior� perhaps building o� work by Smirni �SRar� RSSS����

and memory behavior� possibly using work presented in PMH �ACFS�
� or the

LDA Model �SW��a� as starting points� In addition� we would like to expand the

classes of applications that structural models have been shown to apply to�

Expanding the use of structural models� We demonstrated the use of

structural models in predictions for scheduling� there are other areas in which

such an approach might prove to be useful� Future work includes examining how

application developers might use the modular design and extensibility of structural

models as part of a large software design project in order to predict the execution

time of a partially written application and steer development e�orts� In addition�

we would like to examine the use of structural models for porting e�orts� A very

common problem for application scientists is the fact that the platforms continually

change as hardware resources are upgraded� Given an application running on soon�

to�be�retired platform� applications developers would like to have a pragmatic way

to decide where their application would best be ported to� and structural models

may provide one way to determine this information�

Using other forms of extended information� We extended structural mod�

els� predictions and scheduling to take into account stochastic values� There are

other sources of meta�data that might also be bene	cial to include� such as error

or bias predictions� or estimates of computational complexity� Another common

problem seen in predictions is the lack of a complete set of information� so we would

like to investigate how to compensate for incomplete information in predictions and

scheduling�

Extending the applicability of stochastic predictions� In Chapter � we

detailed a predictive approach to be used as part of an on�line scheduler� We

would like to address the di�erent needs of predictions used for resource selection�

as this is also a very important part of achieving performance on parallel distributed

systems� In addition� we would like to expand the systems that our predictions

apply to� both in terms of being able to add other types of machines� for example







including predictions for queue times so this approach can take into account queued

systems� and by examining what factors would need to be added in order to use

this approach for larger grid�style computing systems�

Extending stochastic scheduling� By far� the most room for future work

can be seen in the stochastic scheduling approach� Some issues we plan to address

are�

� Can stochastic data be used in other parts of the scheduling process besides
data allocation#

� What other scheduling policies can take advantage of stochastic values� and
how#

� Further extensions to time�balancing� de	nitions for other stochastic value
representations� inclusion of networking information� memory data� other

Tuning factor de	nitions

� Dynamic re�balancing approaches

All of these are logical extensions to the work presented�

	�B Conclusions and Contributions

Distributed parallel platforms are becoming more and more prevalent

in research environments� As they grow in popularity� so does their user base�

Because of this� in part� a growing problem in achieving performance on these

platforms is resource contention� Our solution to this problem was the development

of a more sophisticated scheduling approach that could factor in the variability of

resource performance capabilities�

This thesis presented three main contributions� an approach to de	ne dis�

tributed parallel application performance models called structural modeling� the

ability to parameterize these models with stochastic values in order to meet the




�

prediction needs of shared clusters of workstations� and a stochastic scheduling

policy that can make use of stochastic predictions to achieve better application

execution times and more predictable application behavior� We veri	ed each of

these contributions for an extensive test suite of applications� several platforms

and a variety of load conditions�

In conclusion� we believe that structural modeling is a promising approach

for predicting the behavior of parallel applications running on distributed platforms

due to its extensibility and �exibility� This approach can be augmented to allow for

a variety of sources and types of data� as we extended structural models to allow

for stochastic valued parameters� The resulting predictions from these models can

be used in a variety of settings� with out example of an on�line scheduler just one

possibility�

We demonstrated that stochastic values contribute valuable additional

information about the performance of applications running on shared clusters

of workstations� Both using interval and normal distribution representations of

stochastic data can be used e!ciently� with di�ering results that will meet di�er�

ent prediction needs�

In addition� we de	ned a stochastic scheduling approach that de	ned an

initial approach but also opens up a broad new area of possible schedulers that

take into account additional available information� Our initial instantiation shows

promise in reducing execution time for systems with a high variably in available

performance� as seen in many shared cluster environments�
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